Advertisement

Zn(II)-Containing Metal–Organic Framework for Fluorescence Detection of Nitrobenzene and Prevention Effect on Hypertension via Down-Regulating the Expression of Vitamin D Receptor

  • Ling Wei
  • Jian Lou
  • Li Liu
  • Xiu-Zhi Ma
  • Jia Li
  • Rui PanEmail author
  • Yong-Xin ZhangEmail author
Original Paper
  • 13 Downloads

Abstract

A novel Zn(II)-based metal–organic framework {[Zn(L)](DMF)3}n (1) was prepared by using Zn(II) ions and bifunctional imidazole carboxylate ligands (5-(1H-imidazol-1-yl)isophthalic acid, H2L). Complex 1 is a fluorescent Zn-MOF sensor with high selectivity and sensitivity for the detection of nitrobenzene. KSV can reach 2.875 × 103 M−1. The protective effect of compound 1 on the hypertension was further explored. Firstly, the RT-PCR was performed to explore the influence of compound on vdr expression in vascular endothelial cells. Then, the ELISA assay was conducted to measure the renin and angiotensin II level in vivo after compound treatment. The results obtained from molecular docking and pose scoring software exhibited a possible binding mode of the compound binding to vitamin D receptor, which might provide potential regulation mechanisms for the compound.

Keywords

Zn(II)-complex 3D framework Nitrobenzene detection Hypertension Molecular docking 

Notes

References

  1. 1.
    F. M. Borges, A. R. V. D. Silva, L. H. O. Lima, P. C. Almeida, N. F. C. Vieira, and A. L. G. Machado (2019). Rev. Bras. Enferm. 72, 646.CrossRefGoogle Scholar
  2. 2.
    E. Park, D. Kim, and S. Choi (2019). Public Health 173, 105.CrossRefGoogle Scholar
  3. 3.
    M. Sadeghi, M. Talaei, M. Gharipour, S. Oveisgharan, P. Nezafati, and N. Sarrafzadegan (2019). Anatol. J. Cardiol. 22, 33.Google Scholar
  4. 4.
    N. C. Ferreira-Junior, A. Ruggeri, S. D. Silva, T. T. Zampieri, A. Ceroni, and L. C. Michelini (2019). Physiol. Rep. 7, e14107.CrossRefGoogle Scholar
  5. 5.
    L. Kang, L. Zhao, S. Yao, and C. Duan (2019). Ceram. Int. 45, 16717.CrossRefGoogle Scholar
  6. 6.
    G. Kronenberg and H. Kunte (2019). Neurology 93, 43.CrossRefGoogle Scholar
  7. 7.
    C. Duan, F. Li, M. Yang, H. Zhang, Y. Wu, and H. Xi (2018). Ind. Eng. Chem. Res. 57, 15385.Google Scholar
  8. 8.
    Y. Y. Yang, L. Kang, and H. Li (2019). Ceram. Int. 45, 8017.CrossRefGoogle Scholar
  9. 9.
    L. Kang, H. L. Du, X. Du, H. T. Wang, W. L. Ma, M. L. Wang, and F. B. Zhang (2018). Desalin. Water Treat. 125, 296.CrossRefGoogle Scholar
  10. 10.
    L. Zhao, L. Kang, and S. Yao (2019). IEEE Access 7, 984.CrossRefGoogle Scholar
  11. 11.
    X. Feng, Y. Q. Feng, J. J. Chen, and L. Y. Wang (2015). Dalton Trans. 244, 804.CrossRefGoogle Scholar
  12. 12.
    X. Feng, L. F. Ma, L. Liu, L. Y. Wang, H. L. Song, and S. Y. Xie (2013). Cryst. Growth Des. 13, 4469.CrossRefGoogle Scholar
  13. 13.
    X. Feng, L. Y. Wang, J. S. Zhao, J. G. Wang, S. W. Ng, B. Liu, and X. G. Shi (2010). CrystEngComm 12, 774.CrossRefGoogle Scholar
  14. 14.
    X. Feng, J. S. Zhao, B. Liu, L. Y. Wang, J. G. Wang, S. W. Ng, G. Zhang, X. G. Shi, and Y. Y. Liu (2010). Cryst. Growth Des. 10, 1399.CrossRefGoogle Scholar
  15. 15.
    M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk (2009). Chem. Soc. Rev. 38, 1330.CrossRefGoogle Scholar
  16. 16.
    D. Tian, Y. Li, R. Y. Chen, Z. Chang, G. Y. Wang, and X. H. Bu (2014). J. Mater. Chem. A 2, 1465.CrossRefGoogle Scholar
  17. 17.
    Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen (2012). J. Am. Chem. Soc. 134, 3979.CrossRefGoogle Scholar
  18. 18.
    L. V. Meyer, F. Schönfeld, and K. Müller-Buschbaum (2014). Chem. Commun. 50, 8093.CrossRefGoogle Scholar
  19. 19.
    B. Chen, L. Wang, F. Zapata, G. Qian, and E. B. Lobkovsky (2008). J. Am. Chem. Soc. 130, 6718.CrossRefGoogle Scholar
  20. 20.
    X. G. Liu, H. Wang, B. Chen, Y. Zou, Z. G. Gu, Z. Zhao, and L. Shen (2015). Chem. Commun. 51, 1677.CrossRefGoogle Scholar
  21. 21.
    C. Heering, I. Boldog, V. Vasylyeva, J. Sanchiz, and C. Janiak (2013). CrystEngComm 15, 9757.CrossRefGoogle Scholar
  22. 22.
    M. Y. Sun, D. M. Chen, and C. L. Gao (2018). J. Clust. Sci. 29, 593.CrossRefGoogle Scholar
  23. 23.
    M. Y. Sun and D. M. Chen (2017). Inorg. Chem. Commun. 82, 61.CrossRefGoogle Scholar
  24. 24.
    M. Y. Sun, D. M. Chen, and H. Zhang (2016). Inorg. Chem. Commun. 73, 103.CrossRefGoogle Scholar
  25. 25.
    D. Ma, B. Li, X. Zhou, Q. Zhou, K. Liu, G. Zeng, G. Li, Z. Shi, and S. Feng (2013). Chem. Commun. 49, 8964.CrossRefGoogle Scholar
  26. 26.
    Z. Zhang, S. Xiang, X. Rao, Q. Zheng, F. R. Fronczek, G. Qian, and B. Chen (2010). Chem. Commun. 46, 7205.CrossRefGoogle Scholar
  27. 27.
    D. M. Chen, N. N. Zhang, C. S. Liu, and M. Du (2017). J. Mater. Chem. C 5, 2311.CrossRefGoogle Scholar
  28. 28.
    D. M. Chen, J. Y. Tian, Z. W. Wang, C. S. Liu, M. Chen, and M. Du (2017). Chem. Commun. 53, 10668.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Clinical NutritionThe Second People’s Hospital of Yunnan ProvinceKunmingChina
  2. 2.Department of Clinical NutritionKunming Yan’an HospitalKunmingChina
  3. 3.Department of Clinical NutritionGejiu People’s HospitalGejiuChina
  4. 4.Department of CerebrovascularYuxi People’s HospitalYuxiChina
  5. 5.Department of Clinical NutritionYuxi People’s HospitalYuxiChina

Personalised recommendations