Advertisement

Biofabrication of AgNPs Nanoparticles and Their Loading with Sevoflurane, a Volatile Anesthetic Drug for Therapeutic Treatment of Focal Cerebral Ischemia-In-Vivo Studies in Rats

  • Biao Zhou
  • Bo Cui
  • Wei JingEmail author
Original Paper
  • 9 Downloads

Abstract

The process of green reduction was used to prepare the colloidal mixture of silver nanoparticles (AgNPs) with the help of silver nitrate (AgNO3), which is used as a precursor along with the existence of Bischofia javanica leaf extract that plays both as a reducing as well as capping agent. An aesthetic drug which is volatile in nature and is used to form nano-drug complex (SF-AgNPs), Sevoflurane (SF) was used to functionalize the fabricated AgNPs. The interaction and loading of the drug with AgNPs is studied with the help of several analytical mechanisms such as dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet–visible (UV–Vis) absorption spectra. Several reflections in the XRD spectra and the shift observed in the SPR peak of UV–Vis is accredited to the loading of SF on the surface of AgNPs. When related with the bare NPs, the growth in the size of SF-loaded NPs confirms the loading of drug. Further investigation disclosed that the SF-AgNPs of 20 nm increased the fabrication of anti-inflammatory cytokines, along with the inhibition of ischemia–reperfusion induced microglias and astrocytes activation. In addition, the molecules of pro-apoptotic were down regulated and the expressions of anti-apoptotic proteins were up regulated in the post-ischemic brains. When examining the group treated with 15 nm AgNPs, these effects were noticed to be conflicting. These responses exposed that the neuroprotection of SF-AgNPs 20 nm was ascribable to its anti-apoptotic as well as anti-inflammatory effects. The present work can deliver a unique approach for the healing of cerebral ischemia–reperfusion injury. Owing to the above results, this work provided modernized understandings into the self-treatment of SF-AgNPs for cerebral ischemic stroke (IS).

Keywords

AgNPs Cerebral ischemia Sevoflurane 

Notes

Acknowledgements

Authors are thankful to Tai’an City central hospital, Shandong province for providing platform to do this research.

References

  1. 1.
    M. G. Bousser (2012). Front Med. 6, 22.CrossRefGoogle Scholar
  2. 2.
    C. J. Murray and A. D. Lopez (1997). Lancet. 349, 1269.CrossRefGoogle Scholar
  3. 3.
    D. J. Cook, L. Teves, and M. Tymianski (2012). Nature. 483, 213.CrossRefGoogle Scholar
  4. 4.
    J. P. MacManus, A. M. Buchan, I. E. Hill, I. Rasquinha, and E. Preston (1993). Neurosci. Lett. 164, 89.CrossRefGoogle Scholar
  5. 5.
    T. Lelekov-Boissard, G. Chapuisat, J. P. Boissel, E. Grenier, and M. A. Dronne (2009). Transact. A Math. Phys. Eng. Sci. 367, 4699.CrossRefGoogle Scholar
  6. 6.
    S. Wang, H. Wang, H. Guo, L. Kang, X. Gao, and L. Hu (2011). Neuroscience. 185, 150.CrossRefGoogle Scholar
  7. 7.
    J. Jordan, T. Segura, D. Brea, M. F. Galindo, and J. Castillo (2008). Curr. Pharm. Des. 14, 3549.CrossRefGoogle Scholar
  8. 8.
    S. B. Maddinedi, B. K. Mandal, and S. K. Maddili (2017). J. Photochem. Photobiol. B. 167, 236.CrossRefGoogle Scholar
  9. 9.
    S. B. Maddinedi, B. K. Mandal, and K. K. Anna (2017). Environ. Toxicol. Pharmacol. 49, 131.CrossRefGoogle Scholar
  10. 10.
    S. B. Maddinedi, B. K. Mandal, and K. K. Anna (2017). Environ. Toxicol. Pharmacol. 51, 23.CrossRefGoogle Scholar
  11. 11.
    S. B. Maddinedi, B. K. Mandal, K. K. Anna, S. H. Patel, V. V. Andharkar, R. Shivendu, and D. Nandita (2017). J. Photochem. Photobiol. B. 116, 252.CrossRefGoogle Scholar
  12. 12.
    R. F. Wallin, B. M. Regan, M. D. Napoli, and I. J. Stern (1975). Anesth. Analg. 54, 758.CrossRefGoogle Scholar
  13. 13.
    T. J. Ebert, P. G. Schmid, P. G. Barash, B. F. Cullen and R. K. Stoelting (2001). III. Inhalation Anesthesia, Chapter 15, in Clinical Anesthesia, 4th ed. (Lippincott Williams & Wilkins: Philadelphia, PA, USA). p. 377.Google Scholar
  14. 14.
    S. Chen and K. Kimura (2001). J. Phys. Chem. B. 105, 5397.CrossRefGoogle Scholar
  15. 15.
    K. Anandalakshmi, J. Venugobal, and V. Ramasamy (2016). Appl. Nanosci. 6, 399.CrossRefGoogle Scholar
  16. 16.
    K. Jeeva, M. Thiyagarajan, V. Elangovan, N. Geetha, and P. Venkatachalam (2014). Ind. Crops Products. 52, 714.CrossRefGoogle Scholar
  17. 17.
    V. Kumar and S. K. Yadav (2009). J. Chem. Technol. Biotechnol. 84, 151.CrossRefGoogle Scholar
  18. 18.
    X. Xiong, G. E. Barreto, L. Xu, Y. B. Ouyang, X. Xie, and R. G. Giffard (2011). Stroke. 42, 2026.CrossRefGoogle Scholar
  19. 19.
    C. Benakis, C. Bonny, and L. Hirt (2010). Brain Behav. Immun. 24, 800.CrossRefGoogle Scholar
  20. 20.
    J. Zaremba and J. Losy (2004). Neurol. Neurochir. Pol. 38, S57.Google Scholar
  21. 21.
    A. K. Abbas, K. M. Murphy, and A. Sher (1996). Nature. 383, 787.CrossRefGoogle Scholar
  22. 22.
    J. Dokic, R. Rudolf, S. Tomic, S. Stopic, B. Friedrich, B. Budic, I. Anzel, and M. Colic (2012). J. Biomed. Nanotechnol. 8, 528.CrossRefGoogle Scholar
  23. 23.
    M. P. Mattson, W. Duan, W. A. Pedersen, and C. Culmsee (2001). Apoptosis. 6, 69.CrossRefGoogle Scholar
  24. 24.
    Y. Li, M. Chopp, N. Jiang, F. Yao, and C. Zaloga (1995). J. Cereb. Blood Flow Metab. 15, 389.CrossRefGoogle Scholar
  25. 25.
    L. Li, L. Peng, and Z. Zuo (2008). Eur. J. Pharmacol. 586, 106.CrossRefGoogle Scholar
  26. 26.
    P. H. Chan (2004). Research. 29, 1943.Google Scholar
  27. 27.
    D. Tsuchiya, S. Hong, Y. Matsumori, T. Kayama, R. A. Swanson, W. H. Dillman, J. Liu, S. S. Panter, and P. R. Weinstein (2003). Neurosurgery. 53, 1179.CrossRefGoogle Scholar
  28. 28.
    J. Y. Chan, H. L. Cheng, J. L. Chou, F. C. Li, K. Y. Dai, S. H. Chan, and A. Y. Chang (2007). J. Biol. Chem. 282, 4585.CrossRefGoogle Scholar
  29. 29.
    V. Calabrese, C. Mancuso, A. Ravagna, M. Perluigi, C. Cini, C. De Marco, D. A. Butterfield, and A. M. Stella (2007). J. Neurochem. 101, 709.CrossRefGoogle Scholar
  30. 30.
    A. Kader, V. I. Frazzini, R. A. Solomon, and R. R. Trifiletti (1993). Stroke. 24, 1709.CrossRefGoogle Scholar
  31. 31.
    J. Cui, E. H. Holmes, T. G. Greene, and P. K. Liu (2000). FASEB J. 14, 955.CrossRefGoogle Scholar
  32. 32.
    A. V. Dutra, H. F. Lin, S. H. Juo, H. Mohrenweiser, S. Sen, and R. P. Grewal (2006). BMC Med. Genet. 7, 78.CrossRefGoogle Scholar
  33. 33.
    A. M. Alkilany and C. J. Murphy (2010). J. Nanopart. Res. 12, 2313.CrossRefGoogle Scholar
  34. 34.
    N. Lewinski, V. Colvin, and R. Drezek (2008). Small. 4, 26.CrossRefGoogle Scholar
  35. 35.
    N. Khlebtsov and L. Dykman (2011). Chem. Soc. Rev. 40, 1647.CrossRefGoogle Scholar
  36. 36.
    S. Maiti (2011). J. Biomed. Nanotechnol. 7, 65.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of AnaesthesiologyLuoyang Center Hospital Affiliated to Zhengzhou UniversityLuoyangChina
  2. 2.Department of AnesthesiologyTai’an City Second Hospital of Traditional Chinese MedicineTai’anChina
  3. 3.Department of AnaesthesiologyTai’an City Central HospitalTai’anChina

Personalised recommendations