Response Surface Methodology Optimization of Mono-dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol–Gel Method for Outstanding Antimicrobial and Antibiofilm Activities

  • Chiew Wee Wong
  • Yen San Chan
  • Jaison Jeevanandam
  • Kaushik PalEmail author
  • Mikhael Bechelany
  • M. Abd Elkodous
  • Gharieb S. El-SayyadEmail author
Original Paper


Magnesium oxide (MgO) nanoparticles are one of the highly significant compounds in construction. The novelty concentrated on using sol–gel technique coupled with ultrasonication for synthesis of MgO nanoparticles to prevent the agglomeration and its effect on the size was investigated. The synthesized samples were characterized by TGA, DSC, XRD, FTIR, SEM, EDX mapping, DLS, and HRTEM. Antimicrobial and antibiofilm activities of MgO nanoparticles were investigated against multidrug-resistant microbes causing-urinary tract infection (UTI). TGA, XRD, and FTIR characterization were used to identify the calcination temperature, characterization peaks, and functional groups of MgO nanoparticles, respectively. DLS technique confirmed the particle size distribution which found to be 21.04 nm. HRTEM and SEM/EDX mapping showed that MgO nanoparticles are pure, spherical and the average particle size is 19.2 nm. MgO nanoparticles showed a promising antimicrobial effect against all UTI-causing pathogens. It showed a prominent antimicrobial capability against Staphylococcus aureus, Escherichia coli and Candida albicans by 19.3 mm, 16.1 mm and 15.2 mm ZOI, respectively. Additionally, they showed improved biofilm inhibition as 95.65%, 84.23%, and 76.85% against C. albicans, E. coli and S. aureus, respectively. Therefore, due to these outstanding properties, this study could give insights for solving serious industrial, pharmaceutical and medical challenges throughout the utilization of new nanoparticle-based approach.


MgO nanoparticles Sol–gel synthesis Ultrasound Antibiofilm potential Antimicrobial activity 



All the authors want to acknowledge the support of Department of Chemical Engineering, Faculty of Engineering and Sciences in the experiments and completion of this manuscript. The authors would like to thank the PI of Nanotechnology Research Unit (Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/Biotechnological and Irradiation Processes”. Also, the authors would like to thank Director of Research, Nile University, Egypt and Prof. Mohamed Gobara (Military Technical College, Egyptian Armed Forces), and Zeiss microscope team in Cairo, Egypt for their invaluable advice during this study.


Not applicable.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participation and/or Animals

This article does not contain any studies with human and/or animals performed by any of the authors.

Supplementary material

10876_2019_1651_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)


  1. 1.
    J. T. Seil and T. J. Webster (2012). Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed. 7, 2767.Google Scholar
  2. 2.
    A. El-Batal, et al. (2014). Synthesis of silver nanoparticles and incorporation with certain antibiotic using gamma irradiation. Br. J. Pharm. Res. 4, (11), 1341.CrossRefGoogle Scholar
  3. 3.
    A. F. El-Baz, et al. (2016). Extracellular biosynthesis of anti-Candida silver nanoparticles using Monascus purpureus. J. Basic Microbiol. 56, (5), 531–540.CrossRefPubMedGoogle Scholar
  4. 4.
    K. Karthik, et al. (2018). Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Mol. Cryst. Liq. Cryst. 673, (1), 70–80.CrossRefGoogle Scholar
  5. 5.
    G. S. El-Sayyad, et al. (2019). Facile biosynthesis of tellurium dioxide nanoparticles by Streptomyces cyaneus melanin pigment and gamma radiation for repressing some Aspergillus pathogens and bacterial wound cultures. J. Clust. Sci. Scholar
  6. 6.
    M. Abd Elkodous, et al. (2019). Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B: Biointerfaces 180, 411–428.CrossRefPubMedGoogle Scholar
  7. 7.
    M. Abd Elkodous, et al. (2019). Engineered nanomaterials as potential candidates for HIV treatment: between opportunities and challenges. J. Clust. Sci. 30, (3), 531–540.CrossRefGoogle Scholar
  8. 8.
    A. Kumar and J. Kumar (2008). On the synthesis and optical absorption studies of nano-size magnesium oxide powder. J. Phys. Chem. Solids 69, (11), 2764–2772.CrossRefGoogle Scholar
  9. 9.
    S. Peng, et al. (2015). Influence of functionalized MgO nanoparticles on electrical properties of polyethylene nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 22, (3), 1512–1519.CrossRefGoogle Scholar
  10. 10.
    S. Suresh (2014). Investigations on synthesis, structural and electrical properties of MgO nanoparticles by sol–gel method. J. Ovonic Res. 10, (6), 205–210.Google Scholar
  11. 11.
    A. I. El-Batal, et al. (2019). Penicillium chrysogenum-mediated mycogenic synthesis of copper oxide nanoparticles using gamma rays for in vitro antimicrobial activity against some plant pathogens. J. Clust. Sci. Scholar
  12. 12.
    F. J. Heiligtag and M. Niederberger (2013). The fascinating world of nanoparticle research. Mater. Today 16, (7–8), 262–271.CrossRefGoogle Scholar
  13. 13.
    M. Mastuli, et al. (2014). Growth mechanisms of MgO nanocrystals via a sol–gel synthesis using different complexing agents. Nanoscale Res. Lett. 9, (1), 1–9.CrossRefGoogle Scholar
  14. 14.
    J. Xie, et al. (2017). Influence of moisture absorption on the synthesis and properties of Y2O3–MgO nanocomposites. Ceram. Int. 43, (1), 40–44.CrossRefGoogle Scholar
  15. 15.
    M. Afrand (2017). Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl. Thermal Eng. 110, 1111–1119.CrossRefGoogle Scholar
  16. 16.
    G. Venugopal, et al. (2015). Structural and mechanical properties of MgO-poly (vinyl alcohol) nanocomposite film. Adv. Sci. Eng. Med. 7, (6), 457–464.CrossRefGoogle Scholar
  17. 17.
    H. Guan, et al. (2007). Synthesis of high surface area nanometer magnesia by solid-state chemical reaction. Front. Chem. China 2, (2), 204–208.CrossRefGoogle Scholar
  18. 18.
    G. I. Almerindo, et al. (2011). Magnesium oxide prepared via metal-chitosan complexation method: application as catalyst for transesterification of soybean oil and catalyst deactivation studies. J. Power Sources 196, (19), 8057–8063.CrossRefGoogle Scholar
  19. 19.
    R. Al-Gaashani, et al. (2012). Investigation of the optical properties of Mg(OH)2 and MgO nanostructures obtained by microwave-assisted methods. J. Alloys Compd. 521, 71–76.CrossRefGoogle Scholar
  20. 20.
    H. Mirzaei and A. Davoodnia (2012). Microwave assisted sol–gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1, 4-dihydropyridines. Chin. J. Catal. 33, (9), 1502–1507.CrossRefGoogle Scholar
  21. 21.
    K. Karthik, et al. (2019). Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J. Photochem. Photobiol. B 190, 8–20.CrossRefPubMedGoogle Scholar
  22. 22.
    K. Karthik, et al. (2019). Ultrasonic-assisted CdO–MgO nanocomposite for multifunctional applications. Mater. Technol. 34, (7), 403–414.CrossRefGoogle Scholar
  23. 23.
    K. Karthik, et al. (2019). Microwave-assisted ZrO2 nanoparticles and its photocatalytic and antibacterial studies. J. Clust. Sci. 30, (2), 311–318.CrossRefGoogle Scholar
  24. 24.
    A. Pugazhendhi, et al. (2019). Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J. Photochem. Photobiol. B 190, 86–97.CrossRefPubMedGoogle Scholar
  25. 25.
    C. Martinez-Boubeta, et al. (2010). Self-assembled multifunctional Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomedicine 6, (2), 362–370.CrossRefPubMedGoogle Scholar
  26. 26.
    D.-R. Di, et al. (2012). A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine 8, (8), 1233–1241.CrossRefPubMedGoogle Scholar
  27. 27.
    K. Karthik, et al. (2017). Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater. Lett. 206, 217–220.CrossRefGoogle Scholar
  28. 28.
    J. Jeevanandam, Y. S. Chan, and M. K. Danquah (2017). Calcination-dependent morphology transformation of sol–gel-synthesized MgO nanoparticles. ChemistrySelect 2, (32), 10393–10404.CrossRefGoogle Scholar
  29. 29.
    G. S. El-Sayyad, F. M. Mosallam, and A. I. El-Batal (2018). One-pot green synthesis of magnesium oxide nanoparticles using Penicillium chrysogenum melanin pigment and gamma rays with antimicrobial activity against multidrug-resistant microbes. Adv. Powder Technol. 29, (11), 2616–2625.CrossRefGoogle Scholar
  30. 30.
    V. S. Nagineni, et al. (2005). Microreactors for syngas conversion to higher alkanes: characterization of sol–gel-encapsulated nanoscale Fe–Co catalysts in the microchannels. Ind. Eng. Chem. Res. 44, (15), 5602–5607.CrossRefGoogle Scholar
  31. 31.
    S. V. Gaponenko, V. Gurin, and V. E. E. Borisenko Physics, Chemistry, and Application of Nanostructures: Reviews and Short Notes to Nanomeeting 2003: Minsk, Belarus, 20–23 May 2003 (World Scientific, Singapore, 2003).Google Scholar
  32. 32.
    A. Ashour, et al. (2018). Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40, 141–151.CrossRefGoogle Scholar
  33. 33.
    M. I. A. Abdel Maksoud, et al. (2019). Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties. J. Sol–Gel Sci. Technol. 90, (3), 631–642.CrossRefGoogle Scholar
  34. 34.
    M. Yoshimura and S. Sōmiya (1999). Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia. Mater. Chem. Phys. 61, (1), 1–8.CrossRefGoogle Scholar
  35. 35.
    M. I. A. Abdel Maksoud, et al. (2018). Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co(1 − x) Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for anagrelide determination in biological samples. Mater. Sci. Eng. C 92, 644–656.CrossRefGoogle Scholar
  36. 36.
    T. Athar, A. Hakeem, and W. Ahmed (2012). Synthesis of MgO nanopowder via non aqueous sol–gel method. Adv. Sci. Lett. 7, 27–29.CrossRefGoogle Scholar
  37. 37.
    M. I. A. A. Maksoud, et al. (2019). Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications. J. Mater. Sci. 30, (5), 4908–4919.Google Scholar
  38. 38.
    Z. X. Tang and B. F. Lv (2014). MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng. 31, (3), 591–601.CrossRefGoogle Scholar
  39. 39.
    Z. X. Tang, et al. (2012). Nanosize MgO as antibacterial agent: preparation and characteristics. Braz. J. Chem. Eng. 29, (4), 775–781.CrossRefGoogle Scholar
  40. 40.
    K. Y. Sara Lee, et al. (2012). Effect of ultrasonication on synthesis of forsterite ceramics. Adv. Mater. Res. 576, 252–255.CrossRefGoogle Scholar
  41. 41.
    Hielscher, K. Ultrasonic Milling and Dispersing Technology for Nano-Particles. in MRS Proceedings. 2012. Cambridge Univ Press.Google Scholar
  42. 42.
    K. Karthik, et al. (2019). Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Mater. Res. Innov.. Scholar
  43. 43.
    A. Kaboorani, B. Riedl, and P. Blanchet (2013). Ultrasonication technique: a method for dispersing nanoclay in wood adhesives. J. Nanomater. 2013, 3.CrossRefGoogle Scholar
  44. 44.
    H. Guo, et al. (2005). Effect of heat-treatment temperature on the luminescent properties of Lu2O3: Eu film prepared by Pechini sol–gel method. Appl. Surf. Sci. 243, (1), 245–250.CrossRefGoogle Scholar
  45. 45.
    A. I. El-Batal, et al. (2017). Response surface methodology optimization of melanin production by Streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. J. Clust. Sci. 28, (3), 1083–1112.CrossRefGoogle Scholar
  46. 46.
    M. I. A. A. Maksoud, et al. (2019). Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 127, 144–158.CrossRefPubMedGoogle Scholar
  47. 47.
    A. I. El-Batal, et al. (2019). Antibiofilm and antimicrobial activities of silver boron nanoparticles synthesized by PVP polymer and gamma rays against urinary tract pathogens. J. Clust. Sci. 30, (4), 947–964.CrossRefGoogle Scholar
  48. 48.
    A. I. El-Batal, F. M. Mosallam, and G. S. El-Sayyad (2018). Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes. J. Clust. Sci. 29, (6), 1003–1015.CrossRefGoogle Scholar
  49. 49.
    A. I. El-Batal, et al. (2018). Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microb. Pathog. 118, 159–169.CrossRefPubMedGoogle Scholar
  50. 50.
    A. Baraka, et al. (2017). Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chem. Pap. 71, (11), 2271–2281.CrossRefGoogle Scholar
  51. 51.
    G. D. Christensen, et al. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37, (1), 318–326.PubMedPubMedCentralGoogle Scholar
  52. 52.
    M. A. Ansari, et al. (2014). Antibiofilm efficacy of silver nanoparticles against biofilm of extended spectrum β-lactamase isolates of Escherichia coli and Klebsiella pneumoniae. Appl. Nanosci. 4, (7), 859–868.CrossRefGoogle Scholar
  53. 53.
    S. H. Abidi, et al. (2013). Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmol. 13, (1), 57.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    T. Mathur, et al. (2006). Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J. Med. Microbiol. 24, (1), 25.CrossRefPubMedGoogle Scholar
  55. 55.
    M. A. Elkodous, et al. (2019). Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi 1 − x Fe2O4; X = 0.9/SiO2/TiO2). J. Mater. Sci. 30, (9), 8312–8328.Google Scholar
  56. 56.
    B. Doreswamy, et al. (2005). A novel three-dimensional polymeric structure of crystalline neodymium malonate hydrate. Mater. Lett. 59, (10), 1206–1213.CrossRefGoogle Scholar
  57. 57.
    Jaison, J., S. Balakumar, and Y. Chan. SolGel synthesis and characterization of magnesium peroxide nanoparticles. in IOP Conference Series: Materials Science and Engineering. 2015. IOP Publishing.Google Scholar
  58. 58.
    M. S. Mastuli, et al. (2012). Effects of cationic surfactant in sol–gel synthesis of nano sized magnesium oxide. APCBEE Procedia 3, 93–98.CrossRefGoogle Scholar
  59. 59.
    G. Gao and L. Xiang (2010). Emulsion-phase synthesis of honeycomb-like Mg5(OH)2 (CO3)4·4H2O micro-spheres and subsequent decomposition to MgO. J. Alloys Compd. 495, (1), 242–246.CrossRefGoogle Scholar
  60. 60.
    International Standard ISO 13321, Methods for Determination of Particle Size Distribution Part 8: Photon Correlation Spectroscopy. 1996, International Organization for Standardization (ISO).Google Scholar
  61. 61.
    International Standard ISO 22412, Particle Size Analysis—Dynamic Light Scattering. 2008, International Organization for Standardization (ISO).Google Scholar
  62. 62.
    J. L. Ford (1993). Particle size analysis in pharmaceutics and other industries. Theory and practice. J. Pharm. Pharmacol. 45, (11), 1015.CrossRefGoogle Scholar
  63. 63.
    M. Mourabet, et al. (2014). Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite. Arab. J. Chem. 10, S3292–S3302.CrossRefGoogle Scholar
  64. 64.
    J. Segurola, et al. (1999). Design of eutectic photoinitiator blends for UV/visible curable acrylated printing inks and coatings. Prog. Org. Coat. 37, (1–2), 23–37.CrossRefGoogle Scholar
  65. 65.
    P. Kanmani, et al. (2012). The use of response surface methodology as a statistical tool for media optimization in lipase production from the dairy effluent isolate Fusarium solani. ISRN Biotechnol. 2013, 528708.PubMedPubMedCentralGoogle Scholar
  66. 66.
    L. Reddy, et al. (2008). Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and response surface methodological approaches. Bioresour. Technol. 99, (7), 2242–2249.CrossRefPubMedGoogle Scholar
  67. 67.
    N. Sharma, R. Khanna, and R. D. Gupta (2015). WEDM process variables investigation for HSLA by response surface methodology and genetic algorithm. Eng. Sci. Technol. Int. J. 18, (2), 171–177.CrossRefGoogle Scholar
  68. 68.
    M. R. Waghulde and J. B. Naik (2016). Poly-e-caprolactone-loaded miglitol microspheres for the treatment of type-2 diabetes mellitus using the response surface methodology. J. Taibah Univ. Med. Sci. 11, (4), 364–373.Google Scholar
  69. 69.
    M. Ashengroph, I. Nahvi, and J. Amini (2013). Application of taguchi design and response surface methodology for improving conversion of isoeugenol into vanillin by resting cells of Psychrobacter sp. CSW4. Iran. J. Pharm. Res. 12, (3), 411–421.PubMedPubMedCentralGoogle Scholar
  70. 70.
    R. V. Muralidhar, et al. (2001). A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem. Eng. J. 9, (1), 17–23.CrossRefGoogle Scholar
  71. 71.
    J. L. L. García and M. D. L. de Castro Acceleration and Automation of Solid Sample Treatment (Elsevier Science, Amsterdam, 2002).Google Scholar
  72. 72.
    H. Osman and M. Khairy (2013). Optimization of polyester printing with disperse dye nanoparticles. Indian J. Fibre Text. Res. 38, 202–206.Google Scholar
  73. 73.
    H.-Y. Kim, et al. (2013). Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch. Carbohydr. Polym. 93, (2), 582–588.CrossRefPubMedGoogle Scholar
  74. 74.
    D. Zhou, S. W. Bennett, and A. A. Keller (2012). Increased mobility of metal oxide nanoparticles due to photo and thermal induced disagglomeration. PLoS ONE 7, (5), e37363.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Z.-X. Tang and L.-E. Shi (2008). Preparation of nano-MgO using ultrasonic method and its characteristics. Eclética Química 33, 15–20.CrossRefGoogle Scholar
  76. 76.
    O. Masala and R. Seshadri (2004). Synthesis routes for large volumes of nanoparticles. Annu. Rev. Mater. Res. 34, (1), 41–81.CrossRefGoogle Scholar
  77. 77.
    J. Taurozzi, V. Hackley, and M. Wiesner (2012). Preparation of nanoparticle dispersions from powdered material using ultrasonic disruption. NIST Spec. Publ. 1200, 2.Google Scholar
  78. 78.
    W. A. Twej (2009). Temperature influence on the gelation process of tetraethylorthosilicate using sol–gel technique. Iraqi J. Sci. 50, (1), 43–49.Google Scholar
  79. 79.
    C. Milea, C. Bogatu, and A. Duta (2011). The influence of parameters in silica sol–gel process. Bull. Transilvania Univ. Brasov 4, 53.Google Scholar
  80. 80.
    P.-H. Li and B.-H. Chiang (2012). Process optimization and stability of d-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason. Sonochem. 19, (1), 192–197.CrossRefPubMedGoogle Scholar
  81. 81.
    M. L. Tsai, S. W. Bai, and R. H. Chen (2008). Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle. Carbohydr. Polym. 71, (3), 448–457.CrossRefGoogle Scholar
  82. 82.
    E. S. K. Tang, M. Huang, and L. Y. Lim (2003). Ultrasonication of chitosan and chitosan nanoparticles. Int. J. Pharm. 265, (1–2), 103–114.CrossRefPubMedGoogle Scholar
  83. 83.
    J. S. Taurozzi, V. A. Hackley, and M. R. Wiesner (2011). Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment–issues and recommendations. Nanotoxicology 5, (4), 711–729.CrossRefPubMedGoogle Scholar
  84. 84.
    L. Kumar, et al. (2015). Full factorial design for optimization, development and validation of HPLC method to determine valsartan in nanoparticles. Saudi Pharm. J. 23, (5), 549–555.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    A. I. El-Batal, et al. (2019). Potential nematicidal properties of silver boron nanoparticles: synthesis, characterization, in vitro and in vivo root-knot nematode (Meloidogyne incognita) treatments. J. Clust. Sci. 30, (3), 687–705.CrossRefGoogle Scholar
  86. 86.
    Powder Diffraction File, 71-1176. International Centre for Diffraction Data. Newton Square, PA, 2000.Google Scholar
  87. 87.
    R. Wongmaneerung, R. Yimnirun, and S. Ananta (2009). Effect of magnesium niobate precursors on phase formation, microstructure and dielectric properties of perovskite lead magnesium niobate ceramics. J. Alloys Compd. 477, (1–2), 805–810.CrossRefGoogle Scholar
  88. 88.
    M. A. Shah (2010). Preparation of MgO nanoparticles with water. Afr. Rev. Phys. 4, 3.Google Scholar
  89. 89.
    S. Demirci, et al. (2015). Synthesis and comparison of the photocatalytic activities of flame spray pyrolysis and sol–gel derived magnesium oxide nano-scale particles. Mater. Sci. Semicond. Process. 34, 154–161.CrossRefGoogle Scholar
  90. 90.
    G. Marina, et al. (2017). Problems of magnesium oxide wallboard usage in construction. IOP Conf. Ser. 90, (1), 012103.Google Scholar
  91. 91.
    A. M. Pourrahimi, et al. (2016). Polyethylene nanocomposites for the next generation of ultralow-transmission-loss HVDC cables: insulation containing moisture-resistant MgO nanoparticles. ACS Appl. Mater. Interfaces 8, (23), 14824–14835.CrossRefPubMedGoogle Scholar
  92. 92.
    M. S. Attia, et al. (2019). Spirulina platensis-polysaccharides promoted green silver nanoparticles production using gamma radiation to suppress the expansion of pear fire blight-producing Erwinia amylovora. J. Clust. Sci. 30, (4), 919–935.CrossRefGoogle Scholar
  93. 93.
    Hamid, H., Infrared Spectrometry 2007: New Delhi. p. 26.Google Scholar
  94. 94.
    F. M. Mosallam, et al. (2018). Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb. Pathog. 122, 108–116.CrossRefPubMedGoogle Scholar
  95. 95.
    J. Mohan Organic Spectroscopy: Principles and Applications (Alpha Science, Oxford, 2004).Google Scholar
  96. 96.
    Merlic, C.A. and B.C. Fam. Table of IR Absorptions. 2000 [cited 2016 April 17]; Available from:
  97. 97.
    K. Nakanishi and P. H. Solomon Infrared Absorption Spectroscopy (Emerson-Adams Press, Boca Raton, 1977).Google Scholar
  98. 98.
    C. Ashok, R. K. Venkateswara, and Chakra C. Shilpa (2015). Synthesis and characterization of MgO/TiO2 nanocomposites. J. Nanomed. Nanotechnol. 6, (329), 2.Google Scholar
  99. 99.
    L.-Z. Pei, et al. (2010). Low temperature synthesis of magnesium oxide and spinel powders by a sol–gel process. Mater. Res. 13, (3), 339–343.CrossRefGoogle Scholar
  100. 100.
    Y.-S. Heo, et al. (2011). Construction application of fibre/mesh method for protecting concrete columns in fire. Constr. Build. Mater. 25, (6), 2928–2938.CrossRefGoogle Scholar
  101. 101.
    L. F. Vilches, et al. (2003). Recycling potential of coal fly ash and titanium waste as new fireproof products. Chem. Eng. J. 95, (1–3), 155–161.CrossRefGoogle Scholar
  102. 102.
    T. Jin and Y. He (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanoparticle Res. 13, (12), 6877–6885.CrossRefGoogle Scholar
  103. 103.
    Y. H. Leung, et al. (2014). Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10, (6), 1171–1183.CrossRefPubMedGoogle Scholar
  104. 104.
    K. Yamada, et al. (2000). Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cement Concr. Res. 30, (2), 197–207.CrossRefGoogle Scholar
  105. 105.
    P. Tian, et al. (2013). Synthesis of porous hierarchical MgO and its superb adsorption properties. ACS Appl. Mater. Interfaces 5, (23), 12411–12418.CrossRefPubMedGoogle Scholar
  106. 106.
    T. Ungár, et al. (2005). Correlation between subgrains and coherently scattering domains. Powder Diffr. 20, (04), 366–375.CrossRefGoogle Scholar
  107. 107.
    G. Schmid Nanoparticles: From Theory to Application (Wiley, New York, 2011).Google Scholar
  108. 108.
    K. Pal, M. A. Elkodous, and M. M. Mohan (2018). CdS nanowires encapsulated liquid crystal in-plane switching of LCD device. J. Mater. Sci. 29, (12), 10301–10310.Google Scholar
  109. 109.
    M. A. El-Ghazaly, et al. (2016). Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can. J. Physiol. Pharmacol. 95, (2), 101–110.CrossRefPubMedGoogle Scholar
  110. 110.
    A. El-Batal, et al. (2016). Impact of silver and selenium nanoparticles synthesized by gamma irradiation and their physiological response on early blight disease of potato. J. Chem. Pharm. Res. 8, (4), 934–951.Google Scholar
  111. 111.
    A. I. El-Batal, et al. (2017). Melanin-gamma rays assistants for bismuth oxide nanoparticles synthesis at room temperature for enhancing antimicrobial, and photocatalytic activity. J. Photochem. Photobiol. B 173, 120–139.CrossRefPubMedGoogle Scholar
  112. 112.
    K. Karthik, et al. (2019). Multifunctional applications of microwave-assisted biogenic TiO2 nanoparticles. J. Clust. Sci. 30, (4), 965–972.CrossRefGoogle Scholar
  113. 113.
    S. Pal, Y. K. Tak, and J. M. Song (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, (6), 1712–1720.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Y. He, et al. (2016). Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J. Nanobiotechnol. 14, (1), 54.CrossRefGoogle Scholar
  115. 115.
    M. Sundrarajan, J. Suresh, and R. R. Gandhi (2012). A comparative study on antibacterial properties of MgO nanoparticles prepared under different calcination temperature. Digest J. Nanomater. Biostruct. 7, (3), 983–989.Google Scholar
  116. 116.
    C. Ashajyothi, et al. (2016). Antibiofilm activity of biogenic copper and zinc oxide nanoparticles-antimicrobials collegiate against multiple drug resistant bacteria: a nanoscale approach. J. Nanostruct. Chem. 6, (4), 329–341.CrossRefGoogle Scholar
  117. 117.
    H.-J. Park, et al. (2013). Removal characteristics of engineered nanoparticles by activated sludge. Chemosphere 92, (5), 524–528.CrossRefPubMedGoogle Scholar
  118. 118.
    A. I. El-Batal, et al. (2018). Antimicrobial, antioxidant and anticancer activities of zinc nanoparticles prepared by natural polysaccharides and gamma radiation. Int. J. Biol. Macromol. 107, 2298–2311.CrossRefPubMedGoogle Scholar
  119. 119.
    A. El-Batal, et al. (2013). Gamma irradiation induces silver nanoparticles synthesis by Monascus purpureus. J. Chem. Pharm. Res. 5, (8), 1–15.Google Scholar
  120. 120.
    N. Mazaheri, A. Karimi, and H. Salavati (2019). In vivo toxicity investigation of magnesium oxide nanoparticles in rat for environmental and biomedical applications. Iran. J. Biotechnol. 17, (1), 1–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of Engineering and ScienceCurtin UniversityMiriMalaysia
  2. 2.Department of Nanotechnology, Bharath Institute of Higher Education and ResearchBharath UniversityChennaiIndia
  3. 3.CNRS, Institut Européen des Membranes (IEMM, ENSCM UM CNRS UMR5635) Place Eugèn eBataillonMontpellier Cedex 5France
  4. 4.Center for Nanotechnology (CNT), School of Engineering and Applied SciencesNile UniversitySheikh Zayed, GizaEgypt
  5. 5.Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT)Atomic Energy AuthorityCairoEgypt

Personalised recommendations