Advertisement

Biosynthesis of Silver Nanoparticles Using Epilobium parviflorum Green Tea Extract: Analytical Applications to Colorimetric Detection of Hg2+ Ions and Reduction of Hazardous Organic Dyes

  • Ali Serol ErtürkEmail author
Original Paper
  • 25 Downloads

Abstract

The present paper reports an unexplored simple, single step and cost effective green process for the preparation of highly stable silver nanoparticles (AgNPs) using Epilobium parviflorum (EP) extract and investigates their catalytic activity towards hazardous organic dyes, congo red (CR), rhodamine B (RhB), methyl orange (MO), methyl red (MR), and colorimetric sensing ability for Hg2+ ions in solutions. Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR–FTIR) studies confirmed the capping and stabilization of the AgNPs by EP extract. X-ray diffraction (XRD) pattern showed face centered cubic structure for the AgNPs. Transmission electron microscopy (TEM) validated that the AgNPs are spherical in shape with narrow size distribution of 5.59 ± 1.12 nm. The results indicate that regardless of their good linear dynamic range (0.5–5.0 µM), detection limit (58.11 nM, 11.62 ppb) and selectivity for the accurate determination of Hg2+ ions, the AgNPs can be attractive choices for wastewater management systems.

Keywords

Biosynthesis Epilobium parviflorum Silver nanoparticles Colorimetric sensor Organic dyes 

Notes

Compliance with Ethical Standards

Conflict of interest

The author declares that they have no conflict of interest.

References

  1. 1.
    V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Adv. Coll. Interface. Sci. 145, 83.CrossRefGoogle Scholar
  2. 2.
    V. Annavaram, V. R. Posa, V. G. Uppara, S. Jorepalli, and A. R. Somala (2015). BioNanoScience 5, 97.CrossRefGoogle Scholar
  3. 3.
    M. Li, X. Huang, and H. Yu (2019). Mater. Sci. Eng., C 101, 614.CrossRefGoogle Scholar
  4. 4.
    M. Zhao, H. Yu, and Y. He (2019). Sens. Actuat. B Chem. 283, 329.CrossRefGoogle Scholar
  5. 5.
    J. Du, M. Zhao, W. Huang, Y. Deng, and Y. He (2018). Anal. Bioanal. Chem. 410, 4519.CrossRefGoogle Scholar
  6. 6.
    W. Huang, Y. Deng, and Y. He (2017). Biosens. Bioelectron. 91, 89.CrossRefGoogle Scholar
  7. 7.
    G. Elmacı, A. S. Ertürk, M. Sevim, and Ö. Metin (2019). Int. J. Hydrogen Energy 44, 17995.CrossRefGoogle Scholar
  8. 8.
    A. S. Ertürk and G. Elmacı (2018). J. Inorg. Organomet. Polym Mater. 28, 2100.CrossRefGoogle Scholar
  9. 9.
    M. U. Gürbüz and A. S. Ertürk (2018). J. Turkish Chem. Soc. Sec. A Chem. 5, 885.CrossRefGoogle Scholar
  10. 10.
    S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, 17.CrossRefGoogle Scholar
  11. 11.
    Y. He, B. Xu, W. Li, and H. Yu (2015). J. Agric. Food Chem. 63, 2930.CrossRefGoogle Scholar
  12. 12.
    Y. Zhou, W. Huang, and Y. He (2018). Sens. Actuat. B Chem. 270, 187.CrossRefGoogle Scholar
  13. 13.
    L. Wei, J. Lu, H. Xu, A. Patel, Z.-S. Chen, and G. Chen (2015). Drug Discov. Today 20, 595.CrossRefGoogle Scholar
  14. 14.
    H. Veisi, S. Azizi, and P. Mohammadi (2018). J. Cleaner Prod. 170, 1536.CrossRefGoogle Scholar
  15. 15.
    N. Durán, P. D. Marcato, M. Durán, A. Yadav, A. Gade, and M. Rai (2011). Appl. Microbiol. Biotechnol. 90, 1609.CrossRefGoogle Scholar
  16. 16.
    M. Ovais, I. Ahmad, A. T. Khalil, S. Mukherjee, R. Javed, M. Ayaz, et al (2018). Appl. Microbiol. Biotechnol. 1.Google Scholar
  17. 17.
    T. Bajer, D. Silha, K. Ventura, and P. Bajerova (2017). Ind. Crops Prod. 100, 95.CrossRefGoogle Scholar
  18. 18.
    A. K. Kiss, A. Bazylko, A. Filipek, S. Granica, E. Jaszewska, U. Kiarszys, et al. (2011). Phytomedicine 18, 557.CrossRefGoogle Scholar
  19. 19.
    V. Kumar, S. Mohan, D. K. Singh, D. K. Verma, V. K. Singh, and S. H. Hasan (2017). Mater. Sci. Eng., C 71, 1004.CrossRefGoogle Scholar
  20. 20.
    N. A. Khan, A. Niaz, M. I. Zaman, F. A. Khan, and M. Tariq (2018). Mater. Res. Bull. 102, 330.CrossRefGoogle Scholar
  21. 21.
    L. B. Anigol, J. S. Charantimath, and P. M. Gurubasavaraj (2017). Org. Med. Chem. 3, 1.Google Scholar
  22. 22.
    S. P. Dubey, M. Lahtinen, and M. Sillanpää (2010). Process Biochem. 45, 1065.CrossRefGoogle Scholar
  23. 23.
    S. M. Roopan, G. Madhumitha, A. A. Rahuman, C. Kamaraj, A. Bharathi, and T. Surendra (2013). Ind. Crops Prod. 43, 631.CrossRefGoogle Scholar
  24. 24.
    K. S. Chou, Y. C. Lu, and H. H. Lee (2005). Mater. Chem. Phys. 94, 429.CrossRefGoogle Scholar
  25. 25.
    F. Samari, H. Salehipoor, E. Eftekhar, and S. Yousefinejad (2018). New J. Chem. 42, 15905.CrossRefGoogle Scholar
  26. 26.
    M. Li, S. K. Cushing, and N. Wu (2015). Analyst 140, 386.CrossRefGoogle Scholar
  27. 27.
    J. P. Oliveira, A. R. Prado, W. J. Keijok, M. R. N. Ribeiro, M. J. Pontes, B. V. Nogueira, et al (2017). Arabian J. Chem.Google Scholar
  28. 28.
    P. Song, J.-J. Feng, F.-Y. Guo, and A.-J. Wang (2015). J. Mater. Chem. A 3, 15920.CrossRefGoogle Scholar
  29. 29.
    V. Kumar, D. K. Singh, S. Mohan, D. Bano, R. K. Gundampati, and S. H. Hasan (2017). J. Photochem. Photobiol., B 168, 67.CrossRefGoogle Scholar
  30. 30.
    W. R. Rolim, M. T. Pelegrino, B. de Araujo Lima, L. S. Ferraz, F. N. Costa, J. S. Bernardes, et al. (2019). Appl. Surf. Sci. 463, 66.CrossRefGoogle Scholar
  31. 31.
    A. Rostami-Vartooni, M. Nasrollahzadeh, and M. Alizadeh (2016). J. Colloid Interface Sci. 470, 268.CrossRefGoogle Scholar
  32. 32.
    M. Ismail, M. I. Khan, K. Akhtar, M. A. Khan, A. M. Asiri, and S. B. Khan (2018). Phys. E (Amsterdam Neth) 103, 367.CrossRefGoogle Scholar
  33. 33.
    M. A. Pantoja-Castro and H. González-Rodríguez (2011). Revista Latinoamericana de Química 39, 107.Google Scholar
  34. 34.
    N. Baert, M. Karonen, and J. P. Salminen (2015). J. Chromatogr. A 1419, 26.CrossRefGoogle Scholar
  35. 35.
    S. Granica, J. P. Piwowarski, M. E. Czerwinska, and A. K. Kiss (2014). J. Ethnopharmacol. 156, 316.CrossRefGoogle Scholar
  36. 36.
    I. Remmel, L. Vares, L. Toom, V. Matto, and A. Raal (2012). Nat. Prod. Commun. 7, 1323.Google Scholar
  37. 37.
    B. H. Tóth, A. Balázs, V. Vukics, É. Szőke, and Á. Kéry (2006). Chromatographia 63, S119.CrossRefGoogle Scholar
  38. 38.
    B. Khodadadi, M. Bordbar, and M. Nasrollahzadeh (2017). J. Colloid Interface Sci. 493, 85.CrossRefGoogle Scholar
  39. 39.
    E. Priyadarshini and N. Pradhan (2017). Sens. Actuat. B Chem. 238, 888.CrossRefGoogle Scholar
  40. 40.
    P. B. Tchounwou, W. K. Ayensu, N. Ninashvili, and D. Sutton (2003). Environ. Toxicol. Int. J. 18, 149.CrossRefGoogle Scholar
  41. 41.
    M. Li, H. Gou, I. Al-Ogaidi, N. Wu, Nanostructured sensors for detection of heavy metals: a review (ACS Publications, 2013).Google Scholar
  42. 42.
    K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, and A. Rafipour (2012). Sens. Actuat. B Chem. 161, 880.CrossRefGoogle Scholar
  43. 43.
    V. Marimuthu, S. Chandirasekar, and N. Rajendiran (2018). ChemistrySelect 3, 3918.CrossRefGoogle Scholar
  44. 44.
    M. Sebastian, A. Aravind, and B. Mathew (2018). Nanotechnology 29, 355502.CrossRefGoogle Scholar
  45. 45.
    C. Tagad, H. H. Seo, R. Tongaonkar, Y. W. Yu, J. H. Lee, M. Dingre, et al. (2017). Sens. Mater. 29, 205.Google Scholar
  46. 46.
    M. Sengan, D. Veeramuthu, and A. Veerappan (2018). Mater. Res. Bull. 100, 386.CrossRefGoogle Scholar
  47. 47.
    I. Uddin, K. Ahmad, A. A. Khan, and M. A. Kazmi (2017). Sens. Bio-Sens. Res. 16, 62.CrossRefGoogle Scholar
  48. 48.
    S. S. Ravi, L. R. Christena, N. SaiSubramanian, and S. P. Anthony (2013). Analyst 138, 4370.CrossRefGoogle Scholar
  49. 49.
    A. Devadiga, K. Vidya Shetty, and M. B. Saidutta (2017). Mater. Lett. 207, 66.CrossRefGoogle Scholar
  50. 50.
    M. McDonald, I. Mila, and A. Scalbert (1996). J. Agric. Food Chem. 44, 599.CrossRefGoogle Scholar
  51. 51.
    E. Giannakopoulos, P. Stathi, K. Dimos, D. Gournis, Y. Sanakis, and Y. Deligiannakis (2006). Langmuir 22, 6863.CrossRefGoogle Scholar
  52. 52.
    D. Karthiga and S. P. Anthony (2013). RSC Adv. 3, 16765.CrossRefGoogle Scholar
  53. 53.
    X. Yang, J. D. Ranford, and J. J. Vittal (2004). Cryst. Growth Des. 4, 781.CrossRefGoogle Scholar
  54. 54.
    V. Vinod Kumar and S. P. Anthony (2014). Sens. Actuat. B Chem. 191, 31.CrossRefGoogle Scholar
  55. 55.
    E. Terenteva, V. Apyari, E. Kochuk, S. Dmitrienko, and Y. A. Zolotov (2017). J. Anal. Chem. 72, 1138.CrossRefGoogle Scholar
  56. 56.
    G. V. Ramesh and T. P. Radhakrishnan (2011). ACS Appl. Mater. Interfaces 3, 988.CrossRefGoogle Scholar
  57. 57.
    N. Y. Nadaf, S. S. Kanase (2016). Arabian J. Chem.Google Scholar
  58. 58.
    K. Jyoti and A. Singh (2016). J. Genetic Eng. Biotechnol. 14, 311.CrossRefGoogle Scholar
  59. 59.
    T. Rasheed, M. Bilal, C. Li, F. Nabeel, M. Khalid, and H. M. Iqbal (2018). J. Photochem. Photobiol., B 181, 44.CrossRefGoogle Scholar
  60. 60.
    U. Kurtan, M. Amir, A. Yıldız, and A. Baykal (2016). Appl. Surf. Sci. 376, 16.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, Faculty of PharmacyAdıyaman UniversityAdıyamanTurkey

Personalised recommendations