Advertisement

Molecular Interaction, Antimicrobial, Antioxidant, Cytotoxic and Magnetic Properties of Mn12 Benzoate

  • Mithun K. Ghosh
  • Sandip K. Chandraker
  • Ravindra Shukla
  • Manab Mandal
  • Vivekananda Mandal
  • Tanmay K. GhoraiEmail author
Brief Communication
  • 12 Downloads

Abstract

The synthesis, crystal structure, antimicrobial activity, cytotoxic effect on root tip of Allium cepa Linn (A. cepa L.), antioxidant and magnetochemical properties of [Mn12O12(PhCO2)16(CH3OH)4]·3CH3CN (1) cluster and its molecular interaction with Rhodamine B (RhB) are reported herein. The degree of molecular interaction of RhB with Mn12 benzoate radically changed with time. The absorption peak of Rh B at 554 nm disappeared with addition of solid Mn12 benzoate and a new peak appeared at 497 nm, which indicated a possible molecular interaction between Mn12 benzoate and RhB. Mn12 benzoate significantly inhibited the maximum growth of Enterococcus faecalis MCC 2041(T) with a value of inhibition zone of 14.00 ± 0.76, compared to other bacteria. The MIC and MBC of the test sample against the sensitive bacterial strains was in the range of 30–10 mg/mL and 40–10 mg/mL, respectively; whereas the parental compound did not show any zone of inhibition. The cytotoxicity and DNA damage study in root tip cells of A. cepa L. demonstrated very promising result in presence of Mn12 benzoate. The antioxidant activity of Mn12 benzoate was assessed by 2, 2′-diphenyl-1-picryl hydrazyl radical (DPPH·) assay and the free radical scavenging activity was found to be 68.8%. Variable-temperature (T) and -field (H) solid-state dielectric current (dc) and alternative current (ac) magnetic susceptibility measurements were done on complex 1 over 1.8–300 K, which exhibited ground state spins of S = 10.

Graphic Abstract

Keywords

Mn12 benzoate Molecular interaction Antimicrobial properties Cytotoxic effect Antioxidant activity Magnetic study 

Notes

Acknowledgements

The authors would like to acknowledge the Madhya Pradesh Council of Science & Technology, Govt. of India (File No. A/R&D/RP-2/Phy&Engg./2017-18/271) and Indira Gandhi National Tribal University, Amarkantak, MP. The authors also express sincere thanks to IACS Kolkata for CHN Analysis and DAE Indore for Magnetic measurement.

Authors’ Contributions

MKG carried out the synthesis of complex 1, experiment of molecular interaction, antioxidant activity and also performed for drafting the manuscript. Antimicrobial activity studied by MM and VM, Cytotoxic effect and the statistical analysis performed by SKC and RS. The whole manuscript was design, validate the data, evaluation, conceived the study and writing by TKG. All authors read and approved the final manuscript.

Compliance with ethical standard

Conflicts of interest

The authors declare no conflicts of interest.

Supplementary material

10876_2019_1633_MOESM1_ESM.docx (78 kb)
Supplementary material 1 (DOCX 70 kb)

References

  1. 1.
    S. Mukherjee, J. A. Stull, J. Yano, T. C. Stamatatos, K. Pringouri, T. A. Stich, K. A. Abboud, R. D. Britt, V. K. Yachandra, and G. Christou (2012). Proc. Natl. Acad. Sci. 109, 2257–2262.CrossRefGoogle Scholar
  2. 2.
    E. Y. Tsui, J. S. Kanady, and T. Agapie (2013). Inorg. Chem. 52, 13833–13848.CrossRefGoogle Scholar
  3. 3.
    A. Galstyan, A. Robertazzi, and E. W. Knapp (2012). J. Am. Chem. Soc. 134, 7442–7449.CrossRefGoogle Scholar
  4. 4.
    M. M. Najafpour, M. Z. Ghobadi, B. Haghighi, T. Tomo, J. R. Shen, and S. I. Allakhverdiev (2015). Biochim. Biophys. Acta. 1847, 294–306.CrossRefGoogle Scholar
  5. 5.
    S. Pathak, M. K. Ghosh, and T. K. Ghorai (2018). ChemistrySelect 3, 13501–13506.CrossRefGoogle Scholar
  6. 6.
    L. Yang, X. Li, C. Y. Sun, H. Wu, C. G. Wang, and Z. M. Su (2017). New J. Chem. 41, 3661–3666.CrossRefGoogle Scholar
  7. 7.
    S. Pathak, B. Jana, M. Mandal, V. Mandal, and T. K. Ghorai (2017). J. Mol. Struc. 1147, 480–486.CrossRefGoogle Scholar
  8. 8.
    S. Pathak, M. K. Ghosh, M. Mandal, V. Mandal, A. Bhattacharyya, and T. K. Ghorai (2019). New J. Chem..  https://doi.org/10.1039/c8nj04937h.Google Scholar
  9. 9.
    P. Jayaseelan, S. Prasad, S. Vedanayaki, and R. Rajavel (2016). Arab. J. Chem. 9, S668–S677.CrossRefGoogle Scholar
  10. 10.
    K. Gopinath, K. S. Venkatesh, R. Ilangovan, K. Sankaranarayanan, and A. Arumugam (2013). Ind. Crops Prod. 50, 737–742.CrossRefGoogle Scholar
  11. 11.
    G. Rubner, K. Bensdorf, A. Wellner, B. Kircher, S. Bergemann, I. Ott, and R. Gust (2010). J. Med. Chem. 53, 6889–6898.CrossRefGoogle Scholar
  12. 12.
    P. Gull, M. A. Malik, O. A. Dar, and A. A. Hashmi (2017). J. Mol. Struc. 1134, 734–741.CrossRefGoogle Scholar
  13. 13.
    P. I. Khandelwa and P. Poddar (2017). J. Mater. Chem. B. 5, 9055–9084.CrossRefGoogle Scholar
  14. 14.
    N. Watari, S. Ohnishi, and Y. Ishii (2000). J Phys. Condens. Matter. 12, 6799–6823.CrossRefGoogle Scholar
  15. 15.
    S. A. Corrales, J. M. Cain, K. A. Uhlig, A. M. Mowson, C. Papatriantafyllopoulou, M. K. Peprah, A. Ozarowski, A. J. Tasiopoulos, G. Christou, M. W. Meisel, and C. Lampropoulos (2016). Inorg. Chem. 55, 1367–1369.CrossRefGoogle Scholar
  16. 16.
    R. Gupta, I. Khan, F. Hussain, A. M. Bossoh, I. M. Mbomekallé, P. de Oliveira, M. Sadakane, C. Kato, K. Ichihashi, K. Inoue, and S. Nishihara (2017). Inorg. Chem. 56, 8759–8767.CrossRefGoogle Scholar
  17. 17.
    T. Taguchi, W. Wernsdorfer, K. A. Abboud, and G. Christou (2010). Inorg. Chem. 49, 10579–10589.CrossRefGoogle Scholar
  18. 18.
    D. I. Alexandropoulos, K. M. Poole, L. Cunha-Silva, J. A. Sheikh, W. Wernsdorfer, G. Christou, and T. C. Stamatatos (2017). Chem. Commun. 53, 4266–4269.CrossRefGoogle Scholar
  19. 19.
    N. Bridonneau, L. M. Chamoreau, G. Gontard, J. L. Cantin, J. von Bardeleben, and V. Marvaud (2016). Dalton Trans. 45, 9412–9418.CrossRefGoogle Scholar
  20. 20.
    S. Goel, Z. Wu, S. I. Zones, and E. Iglesia (2012). J. Am. Chem. Soc. 134, 17688–17695.CrossRefGoogle Scholar
  21. 21.
    P. C. Appelbaum and P. A. Hunter (2000). Int J Antimicrob Agents. 16, 5–15.CrossRefGoogle Scholar
  22. 22.
    S. J. Brickner, D. K. Hutchinson, M. R. Barbachyn, P. R. Manninen, D. A. Ulanowicz, S. A. Garmon, K. C. Grega, S. K. Hendges, D. S. Toops, C. W. Ford, and G. E. Zurenko (1996). J. Med. Chem. 39, 673–679.CrossRefGoogle Scholar
  23. 23.
    V. T. Andriole (1998). Curr. Clin. Top. Infect. Dis. 18, 19–36.Google Scholar
  24. 24.
    A. A. Warra (2011). J. Chem. Pharm. Res 3, 951–958.Google Scholar
  25. 25.
    E. E. Moushi, T. C. Stamatatos, W. Wernsdorfer, V. Nastopoulos, G. Christou, and A. J. Tasiopoulos (2008). Inorg. Chem. 48, 5049–5051.CrossRefGoogle Scholar
  26. 26.
    A. M. Ako, M. S. Alam, S. Mameri, Y. Lan, M. Hibert, M. Stocker, P. Müller, C. E. Anson, and A. K. Powell (2012). Eur. J. Inorg. Chem. 26, 4131–4140.CrossRefGoogle Scholar
  27. 27.
    S. Mameri, A. M. Ako, F. Yesil, M. Hibert, Y. Lan, C. E. Anson, and A. K. Powell (2014). Eur. J. Inorg. Chem. 26, 4326–4334.CrossRefGoogle Scholar
  28. 28.
    S. Schmitz, J. V. Leusen, A. Ellern, P. Kögerler, and K. Y. Monakhov (2015). Inorg. Chem. Front. 2, 1095–1100.CrossRefGoogle Scholar
  29. 29.
    M. Murugesu, S. Takahashi, A. Wilson, K. A. Abboud, W. Wernsdorfer, S. Hill, and G. Christou (2008). Inorg. chem. 47, 9459–9470.CrossRefGoogle Scholar
  30. 30.
    R. Sessoli, H. L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou, and D. N. Hendrickson (1993). J. Am. Chem. Soc. 115, 1804–1816.CrossRefGoogle Scholar
  31. 31.
    A. J. Tasiopoulos, W. Wernsdorfer, K. A. Abboud, and G. Christou (2004). Angew. Chem. 116, 6498–6502.CrossRefGoogle Scholar
  32. 32.
    P. King, W. Wernsdorfer, K. A. Abboud, and G. Christou (2005). Inorg. Chem. 44, 8659–8669.CrossRefGoogle Scholar
  33. 33.
    N. E. Chakov, L. N. Zakharov, A. L. Rheingold, K. A. Abboud, and G. Christou (2005). Inorg. Chem. 44, 4555–4567.CrossRefGoogle Scholar
  34. 34.
    I. D. Brown and D. Altermatt (1985). Acta Crystallogr. Sect. B 41, 244–247.CrossRefGoogle Scholar
  35. 35.
    W. Liu and H. H. Thorp (1993). Inorg. Chem. 32, 4102–4105.CrossRefGoogle Scholar
  36. 36.
    A. E. Robinson, A. H. Beckett, and R. N. Dar (1960). J. Pharm. Pharmacol. 12, 385–399.CrossRefGoogle Scholar
  37. 37.
    S. Abraham (1997). Cytologia. 62, 291–294.CrossRefGoogle Scholar
  38. 38.
    A. K. Datta and A. K. Biswas (1983). Cytologia. 48, 293–303.CrossRefGoogle Scholar
  39. 39.
    A. K. Datta, A. K. Biswas, and S. Sen (1986). Cytologia 51, 609–615.CrossRefGoogle Scholar
  40. 40.
    S. Rang and A. K. Datta (1998). J. Natl. Bot. Soc. 52, 17–22.Google Scholar
  41. 41.
    D. S. Kumar, D. Chakrabarty, A. K. Verma, and B. K. Banerji (2011). Caryologia 64, 388–397.CrossRefGoogle Scholar
  42. 42.
    G. C. Kamble and A. S. Patil (2014). Int. J. Sci. Environ. Technol. 3, 166–180.Google Scholar
  43. 43.
    S. Cotelle, J. F. Masfaraud, and J. F. Férard (1999). Mutat. Res. 426, 167–171.CrossRefGoogle Scholar
  44. 44.
    K. Klančnik, D. Drobne, J. Valant, and J. D. Koce (2011). Ecotoxicol. Environ. Saf. 74, 85–92.CrossRefGoogle Scholar
  45. 45.
    A. H. Siddiqui, S. Tabrez, and M. Ahmad (2011). Environ. Monit. Assess. 179, 241–253.CrossRefGoogle Scholar
  46. 46.
    M. Ajaib, M. Almas, K. Mohammed Khan, S. Perveen, and S. Shah (2016). J. Chem. Soc. Pak. 38, 345–351.Google Scholar
  47. 47.
    M. Ajaib, A. Mati-ur-Rehman, K. Mohammed Khan, S. Perveen, and S. Shah (2015). J. Chem. Soc. Pak. 37, 559–566.Google Scholar
  48. 48.
    J. B. Vincent, H. R. Chang, K. Folting, J. C. Huffman, G. Christou, and D. N. Hendrickson (1987). J. Am. Chem. Soc. 109, 5703–5711.CrossRefGoogle Scholar
  49. 49.
    P. V. Van der Sluis and A. L. Spek (1990). Acta Crystallogr. Sect. A 46, 194–201.CrossRefGoogle Scholar
  50. 50.
    SHELXTL6, Bruker-AXS, Madison, Wisconsin, 2008, USA.Google Scholar
  51. 51.
    A. L. Spek (2009). PLATON Acta Cryst. D65, 148–155.Google Scholar
  52. 52.
    E. R. Davidson Magnet (Indiana University, Bloomington, 1999).Google Scholar
  53. 53.
    M. Mandal, S. Paul, M. R. Uddin, M. A. Mondal, S. Mandal, and V. Mandal (2016). Asian Pac. J. Trop. Dis. 6, 54–62.CrossRefGoogle Scholar
  54. 54.
    A. Daphedar and T. C. Taranath (2017). Environ. Sci. Pollut. Res. 24, 25861–25869.CrossRefGoogle Scholar
  55. 55.
    S. K. Chandraker, P. Singh, and B. Pandey (2014). Int. J. Curr. Microbiol. Appl. Sci. 3, 200–206.Google Scholar
  56. 56.
    G. Fiskesjo (1997). Plants. Environ. Stud. 101, 307–333.CrossRefGoogle Scholar
  57. 57.
    A. Akinboro and A. A. Bakare (2007). J. Ethnopharmacol. 112, 470–475.CrossRefGoogle Scholar
  58. 58.
    G. Fiskesjö (1985). Hereditas. 102, 99–112.CrossRefGoogle Scholar
  59. 59.
    P. Bhatta and S. R. Sakya (2009). Int. J. Ecol. 15, 83–88.Google Scholar
  60. 60.
    M. Kumari, S. S. Khan, S. Pakrashi, A. Mukherjee, and N. Chandrasekaran (2011). J Hazard Mater. 190, 613–621.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanomaterials and Crystal Design Laboratory, Department of ChemistryIndira Gandhi National Tribal UniversityAmarkantakIndia
  2. 2.Laboratory of Bio-resource Technology, Department of BotanyIndira Gandhi National Tribal UniversityAmarkantakIndia
  3. 3.Department of BotanyUniversity of Gour BangaMaldaIndia

Personalised recommendations