Advertisement

In Vivo Toxicity Assessment of Laminarin Based Silver Nanoparticles from Turbinaria ornata in Adult Zebrafish (Danio rerio)

  • Remya Rajan Renuka
  • Radhika Rajasree Santha RavindranathEmail author
  • Vasantharaja Raguraman
  • Suman Thodhal Yoganandham
  • Govindaraju Kasivelu
  • Aranganathan Lakshminarayanan
Original Paper
  • 11 Downloads

Abstract

Silver nanoparticles synthesized using laminarin from Turbinaria ornata were subjected to acute toxicity in adult zebrafish. LC50 concentration of L-AgNPs and C-AgNPs at 96 h was noted to be 25.22 and 19.93 mg/L. To find out the fundamental toxicity mechanisms of L-AgNPs and C-AgNPs, the half of LC50 concentration 12.61 and 9.96 mg/L was exposed to adult zebrafish for 14 days respectively. There are no cytological changes in L-AgNPs whereas cytological changes were observed in gills, brain and liver tissues of C-AgNPs. The results concluded a plausible symbol for oxidative stress in zebrafish. The activities of antioxidant enzyme superoxide dismutase, catalase and glutathione peroxidase were decreased significantly in the C-AgNPs exposed while L-AgNPs showed no significant difference when compared to control. ICP-OES analysis of gills, liver and brain demonstrated that L-AgNPs and C-AgNPs revelation for 14 days resulted in enhanced silver uptake compared to fish treated with control are discussed in detail.

Keywords

Laminarin Silver nanoparticles Toxicity Turbinaria ornata ICP-OES Zebrafish (Danio rerio

Notes

Acknowledgements

The authors gratefully acknowledge Central Leather Research Institute–Centre for Analysis, Testing, Evaluation and Reporting Services, Adyar, Chennai for providing the instrumentation facility (ICP-OES).

References

  1. 1.
    S. R. Radhika Rajasree, V. Ganesh Kumar, L. Stanley Abraham, and N. Manoharan (2011). Int. J. Nanosci. 10, 1153.CrossRefGoogle Scholar
  2. 2.
    S. R. Radhika Rajasree, V. Ganesh Kumar, L. Stanley Abraham, and D. Inbakandan (2010). Int. J. Appl. Bioeng. 4, 44.CrossRefGoogle Scholar
  3. 3.
    P. V. Asharani, Y. L. Wu, Z. Gong, and S. Valiyaveettil (2008). Nanotech. 19, 255102.CrossRefGoogle Scholar
  4. 4.
    C. L. Haynes (2010). Anal Bio-anal. Chem. 398, 587.CrossRefGoogle Scholar
  5. 5.
    Q. Zhang, Y. Kusaka, X. Zhu, K. Sato, Y. Mo, T. Kluz, and K. Donaldson (2003). J. Occup. Health. 45, 23.CrossRefGoogle Scholar
  6. 6.
    C. Levard, E. M. Hotze, G. V. Lowry, and G. E. Brown Jr. (2012). Environ. Sci. Technol. 46, 6900.CrossRefGoogle Scholar
  7. 7.
    M. Jeyaraj, M. Rajesh, R. Arun, D. MubarakAli, G. Sathishkumar, G. Sivanandhan, G. K. Dev, M. Manickavasagam, K. Premkumar, N. Thajuddin, and A. Ganapathi (2013). Colloids Surf. B. 102, 708.CrossRefGoogle Scholar
  8. 8.
    B. Sarkar (2010). Fish Chime. 30, 47.Google Scholar
  9. 9.
    E. Oberdorster (2004). Environ. Health Perspect. 112, 1058.CrossRefGoogle Scholar
  10. 10.
    T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J. I. Yeh, M. R. Wiesner, and A. E. Nel (2006). Nano Lett. 2006, 1794.CrossRefGoogle Scholar
  11. 11.
    R. Ramachandran, C. Krishnaraj, V. A. Kumar, S. L. Harper, T. P. Kalaichelvan, and S. I. Yun (2018). 3 Biotech. 8, 441.CrossRefGoogle Scholar
  12. 12.
    S. Bohme, M. Baccaro, M. Schmidt, A. Potthoff, H. J. Stark, T. Reemtsma, and D. Kühnel (2017). Environ. Sci. Nano. 4, 1005.CrossRefGoogle Scholar
  13. 13.
    M. Westerfield The Zebrafish Book In a guide for the Laboratory use of Zebra fish (Danio rerio), 4th ed (University of Oregon Press, Eugene, 2000).Google Scholar
  14. 14.
    A. Massarsky, L. Dupuis, J. Taylor, S. Eisa-Beygi, L. Strek, V. L. Trudeau, and T. W. Moon (2013). Chemosphere. 92, 59.CrossRefGoogle Scholar
  15. 15.
    O. J. Osborne, B. D. Johnston, J. Moger, M. Balousha, J. R. Lead, T. Kudoh, and C. R. Tyler (2013). Nanotoxicology. 7, 1315.CrossRefGoogle Scholar
  16. 16.
    C. Volker, T. Graf, I. Schneider, M. Oetken, and J. Oehlmann (2014). Environ. Sci. Pollut. Res. 21, 10661.CrossRefGoogle Scholar
  17. 17.
    S. Bohme, H. J. Stark, T. Reemtsma, and D. Kühnel (2015). Environ. Sci. Nano. 2, 603.CrossRefGoogle Scholar
  18. 18.
    S. M. Hussain, K. L. Hess, J. M. Gearhart, K. T. Geiss, and J. J. Schlager (2005). Toxicol. In vitro. 19, 975.CrossRefGoogle Scholar
  19. 19.
    C. Krishnaraj, S. L. Harper, and S. I. Yun (2016). J. Hazard Mater. 301, 480.CrossRefGoogle Scholar
  20. 20.
    R. R. Remya, S. R. Radhika Rajasree, L. Aranganathan, T. Y. Suman, and S. Gayathri (2016). IET Nanobiotechnol. 11, 18.CrossRefGoogle Scholar
  21. 21.
    R. R. Remya, S. R. Radhika Rajasree, T. Y. Suman, L. Aranganathan, S. Gayathri, M. Gobalakrishnan, and M. G. Karthih (2018). Mater. Res. Exp..  https://doi.org/10.1088/2053-1591/aab2d8.Google Scholar
  22. 22.
    E. F. Elstner and A. Heupel (1976). Anal. Biochem. 70, 616.CrossRefGoogle Scholar
  23. 23.
    J. P. Ji, Z. B. Wu, Q. Liu, Y. Zhang, M. Ye, and M. Li (1991). J. Nanjing Railway Med. Coll. 10, 27.Google Scholar
  24. 24.
    S. Takahara (1952). The Lancet. 260, 1101.CrossRefGoogle Scholar
  25. 25.
    J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. Hoekstra (1973). Science 179, 588.CrossRefGoogle Scholar
  26. 26.
    T. Y. Suman, S. R. Radhika Rajasree, and R. Kirubagaran (2015). Ecotoxicol. Environ. Safe. 113, 23.CrossRefGoogle Scholar
  27. 27.
    A. J. Kennedy, M. S. Hull, A. J. Bednar, J. D. Goss, J. C. Gunter, J. L. Bouldin, P. J. Vikesland, and J. A. Steevens (2010). Environ. Sci. Technol. 44, 9571.CrossRefGoogle Scholar
  28. 28.
    E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, and R. Behra (2008). Environ. Sci. Technol. 42, 8959.CrossRefGoogle Scholar
  29. 29.
    J. E. Choi, S. Kim, J. H. Ahn, P. Youn, J. S. Kang, K. Park, J. Yi, and D. Y. Ryu (2010). Aquat. Toxicol. 100, 151.CrossRefGoogle Scholar
  30. 30.
    A. Jevgenij, R. S. Kovrižnych, Z. Dagmar, R. Eva, S. Elena, and W. Soňa (2013). Interdiscip. Toxicol. 6, 67.CrossRefGoogle Scholar
  31. 31.
    R. J. Griffitt, J. Luo, J. Gao, J. C. Bonzongo, and D. S. Barber (2008). Environ. Toxicol. Chem. 27, 1972.CrossRefGoogle Scholar
  32. 32.
    M. Girilal, V. Krishnakumar, P. Poornima, A. M. Fayaz, and P. T. Kalaichelvan (2015). Chemosphere. 139, 461.CrossRefGoogle Scholar
  33. 33.
    K. Bilberg, M. B. Hovgaard, F. Besenbacher, and E. Baatrup (2012). J. Toxicol..  https://doi.org/10.1155/2012/293784.Google Scholar
  34. 34.
    Q. Saquib, A. A. Al-Khedhairy, M. A. Siddiqui, F. M. Abou-Tarboush, A. Azam, and J. Musarrat (2012). Toxicol. In Vitro. 26, 351.CrossRefGoogle Scholar
  35. 35.
    E. Kádár, V. Costa, and R. S. Santos (2005). Sci. Total Environ. 358, 143.CrossRefGoogle Scholar
  36. 36.
    D. Xiong, T. Fang, L. Yu, X. Sima, and W. Zhu (2011). Sci. Total Environ. 409, 1444.CrossRefGoogle Scholar
  37. 37.
    A. Ardiansyah and I. Indrayani (2007). HAYATI J. Biosci. 14, 87.CrossRefGoogle Scholar
  38. 38.
    J. O. Olivia, L. Sijie, H. C. Chong, J. Zhaoxia, Y. Xuechen, W. Xiang, L. Shuo, X. Tian, and E. N. Andre (2015). ACS Nano..  https://doi.org/10.1021/acsnano.5b04583.Google Scholar
  39. 39.
    W. Yuan and Z. Qunfang (2013). Environ. Toxicol. Chem. 32, 165.CrossRefGoogle Scholar
  40. 40.
    S. Tedesco, H. Doyle, J. Blasco, G. Redmond, and D. Sheehan (2010). Aquat. Toxicol. 100, 178.CrossRefGoogle Scholar
  41. 41.
    O. J. Osborne, S. Lin, C. H. Chang, Z. Ji, X. Yu, X. Wang, S. Lin, T. Xia, and A. E. Nel (2015). ACS Nano. 9, 9573.CrossRefGoogle Scholar
  42. 42.
    T. M. Scown, E. M. Santos, B. D. Johnston, B. Gaiser, M. Baalousha, S. Mitov, J. R. Lead, V. Stone, T. F. Fernandes, M. Jepson, R. Van Aerle, and C. R. Tyler (2010). Toxicol. Sci. 115, 521.CrossRefGoogle Scholar
  43. 43.
    B. D. Johnston, T. M. Scown, J. Moger, S. Cumberland, M. Baalousha, K. Linge, R. Van Aerle, K. Jarvis, J. R. Lead, and C. R. Tyler (2010). Environ. Sci. Technol. 44, 1144.CrossRefGoogle Scholar
  44. 44.
    R. D. Handy and F. B, in H. P. van Leeuwen and W. Koster (eds.). Eddy Transport of solutes across biological membranes in eukaryotes: an environmental perspective In Physicochemical kinetics and transport at chemical-biological interfaces (Wiley Chichester, 2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Remya Rajan Renuka
    • 1
  • Radhika Rajasree Santha Ravindranath
    • 1
    • 4
    Email author
  • Vasantharaja Raguraman
    • 1
  • Suman Thodhal Yoganandham
    • 1
    • 2
    • 3
  • Govindaraju Kasivelu
    • 1
  • Aranganathan Lakshminarayanan
    • 1
  1. 1.Centre for Ocean ResearchSathyabama Institute of Science and TechnologyChennaiIndia
  2. 2.College of Life ScienceHenan Normal UniversityXinxiangChina
  3. 3.Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingChina
  4. 4.Department of Fish Processing TechnologyKerala University of Fisheries and Ocean Studies (KUFOS)CochinIndia

Personalised recommendations