Cullen corylifolium (L.) Medik. Seed Extract, an Excellent System For Fabrication of Silver Nanoparticles and Their Multipotency Validation Against Different Mosquito Vectors and Human Cervical Cancer Cell Line

  • Himanshu Saini
  • Renuka Yadav
  • Dinesh Kumar
  • Gaurav Kumar
  • Veena AgrawalEmail author
Original Paper


Development of therapeutic drugs for mosquito control and cancer is the need of the hour. This study highlights the fabrication of silver nanoparticles by incubating 45 ml of AgNO3 (0.5 mM) solution with 5 ml of Cullen corylifolium aqueous green seed extract at 60 ± 2 °C, 9 pH for 90 min. Ultraviolet–visible spectroscopy confirmed the synthesis of AgNPs by observing the absorption peak at 422 nm. Crystallographic nature of AgNPs was proved by XRD spectrum. FE-SEM images exhibited that most of AgNPs were spherical in shape with 20–60 nm average size. FT-IR spectrum revealed the existence of secondary metabolites that were involved in the reduction, stabilization and capping of AgNPs. The synthesized AgNPs exhibited the strong bioefficacy against the 3rd instar larvae of Anopheles stephensi (LC50, 6.03; LC90, 10.86 ppm), Aedes aegypti (LC50, 8.29; LC90, 13.75 ppm) and Culex quinquefasciatus (LC50, 16.55; LC90, 36.81 ppm) after 72 h of exposure. The AgNPs also exhibited strong anti-cancer activity having IC50 value 1.129 μg/ml after 24 h. These were proved to be non-toxic against non-target organism and normal cell line. These results suggest that synthesized AgNPs have strong larvicidal and anti-cancer potential and thus can be employed in cancer therapy, targeted drug delivery and drug designing.


Seed extract AgNPs Cullen corylifolium Biosynthesis Larvicidal Anti-cancer 



Authors are grateful to the Science and Engineering Research Board (SERB), Government of India for the sanction of major Research Project (Grant No. EMR/2016/001673) to VA, and to University of Delhi for providing DST PURSE Grant. Himanshu Saini is grateful to DU-UGC for awarding UGC non-NET fellowship.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    V. Gupta, M. Mittal, and V. Sharma (2014).Oman. Med. J. 29, (2), 142.Google Scholar
  2. 2.
    F. W. Overbosch, J. Schinkel, I. G. Stolte, M. Prins, and G. J. Sonder (2018). PLOS One 13, (2), e0192193.CrossRefGoogle Scholar
  3. 3.
    D. Kumar, G. Kumar, and V. Agrawal (2018). Parasitol. Res. 117, (2), 377–389.CrossRefGoogle Scholar
  4. 4.
    World Health Organization (2017). World malaria report. (accessed on June 30, 2018) Available at:
  5. 5.
    G. Benelli, A. L. Iacono, A. Canale, and H. Mehlhorn (2016). Parasitol. Res. 115, (6), 2131–2137.CrossRefGoogle Scholar
  6. 6.
    S. Lehrer (2010). Med. Hypotheses 74, 167–168.CrossRefGoogle Scholar
  7. 7.
    D. Kumar, G. Kumar, R. Das, and V. Agrawal (2018). Process Saf. Environ. Prot. 116, 137–148.CrossRefGoogle Scholar
  8. 8.
    A. Rawani (2017). Int. J. Nanotechnol. Appl. 11, 17–28.Google Scholar
  9. 9.
    C. Tiloke, A. Phulukdaree, K. Anand, R. M. Gengan, and A. A. Chuturgoon (2016). J. Cell Biochem. 117, 2302–2314.CrossRefGoogle Scholar
  10. 10.
    G. Lakshmanan, A. Sathiyaseelan, P. T. Kalaichelvan, and K. Murugesan (2018). Karbala Int. J. Mod. Sci. 4, (1), 61–68.CrossRefGoogle Scholar
  11. 11.
    B. Chopra, A. K. Dhingra, and K. L. Dhar (2013). Psoralea corylifolia L. (Buguchi)-folklore to modern evidence. Fitoterapia 90, 44–56.CrossRefGoogle Scholar
  12. 12.
    F. Alam, G. N. Khan, and M. H. H. B. Asad (2018). Phytother. Res. 32, 597–615.CrossRefGoogle Scholar
  13. 13.
    F. Dong, E. Valasami-Jones, and J. U. Kreft (2016). J. Nanopart. Res. 18, 259.CrossRefGoogle Scholar
  14. 14.
    WHO, Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides (WHO/VBC/81.807, Geneva, 1988).Google Scholar
  15. 15.
    C. D. Patil, S. V. Patil, H. P. Borase, B. K. Salunke, and R. B. Salunkhe (2012). Parasitol. Res. 110, (5), 1815–1822.CrossRefGoogle Scholar
  16. 16.
    Y. R. Saadat, N. Saeidi, S. Z. Vahed, A. Barzegari, and J. Barar (2015). Bioimpacts 5, (1), 25.Google Scholar
  17. 17.
    D. J. Finney Probit Analysis, 3d ed (Cambridge University Press, London, 1971), pp. 68–78.Google Scholar
  18. 18.
    M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, and C. Small (2007). Appl. Phys. B Lasers O 86, (3), 455–460.CrossRefGoogle Scholar
  19. 19.
    K. Anand, C. Tiloke, P. Naidoo, and A. A. Chuturgoon (2017). J. Photochem. Photobiol. B 173, 626–639.CrossRefGoogle Scholar
  20. 20.
    Yu A Mirgood and V. G. Borodina (2013). Inorg. Mat. 49, (10), 980–983.CrossRefGoogle Scholar
  21. 21.
    L. B. Anigol, J. S. Charantimath, and P. M. Gurubasavaraj (2017). Org. Med. Chem. 3, (5), 555–622.Google Scholar
  22. 22.
    H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra (2009). Colloids Surf. A Physicochem. Eng. Aspects 339, 134–139.CrossRefGoogle Scholar
  23. 23.
    A. Verma and M. S. Mehata (2016). J. Radiat. Res. Appl. Sci. 9, (1), 109–115.CrossRefGoogle Scholar
  24. 24.
    H. Veisi, S. Azizi, and P. Mohammadi (2018). J. Clean. Prod. 170, 1536–1543.CrossRefGoogle Scholar
  25. 25.
    R. Sanghi and P. Verma (2009). Biores. Technol. 100, (1), 501–504.CrossRefGoogle Scholar
  26. 26.
    D. Andreescu, C. Eastman, K. Balantrapu, and D. V. Goia (2007). J. Mater. Res. 22, (9), 2488–2496.CrossRefGoogle Scholar
  27. 27.
    M. Sathishkumar, K. Sneha, W. S. Won, C. W. Cho, S. Kim, and Y. S. Yun (2009). Colloids Surf. B Biointerfaces 73, (2), 332–338.CrossRefGoogle Scholar
  28. 28.
    S. M. Roopan, G. Madhumitha, A. A. Rahuman, C. Kamaraj, A. Bharathi, and T. V. Surendra (2013). Ind. Crops Prod. 43, 631–635.CrossRefGoogle Scholar
  29. 29.
    M. Rashidipour and R. Heydari (2014). J. Nanostruct. Chem. 4, 112.CrossRefGoogle Scholar
  30. 30.
    H. M. Ibrahim (2015). J. Radiat. Res. Appl. Sci. 8, (3), 265–275.CrossRefGoogle Scholar
  31. 31.
    P. Premasudha, M. Venkataramana, M. Abirami, P. Vanathi, K. Krishna, and R. Rajendran (2015). Bull. Mater. Sci. 38, (4), 965–973.CrossRefGoogle Scholar
  32. 32.
    M. E. T. Yazdi, V. Khara, H. R. Sadeghnia, S. E. Bahabadi, and M. Darroudi (2018). Res. Chem. Intermed. 44, (2), 1325–1334.CrossRefGoogle Scholar
  33. 33.
    S. Chinnappan, S. Kandasamy, S. Arumugam, K. K. Seralathan, S. Thangaswamy, and G. Muthusamy (2018). Environ. Sci. Pollut. Res. Int. 25, (1), 963–969.CrossRefGoogle Scholar
  34. 34.
    M. Dubey, S. Bhadauria, and B. S. Kushwah (2009). J. Nanomater. Biostruct. 4, 537–543.Google Scholar
  35. 35.
    K. Jyoti, M. Baunthiyal, and A. Singh (2016). J. Radiat. Res. Appl. Sci. 9, (3), 217–227.CrossRefGoogle Scholar
  36. 36.
    D. Y. Kim, R. G. Saratale, S. Shinde, A. Syed, F. Ameen, and G. Ghodake (2018). J. Clean. Prod. 179, 2910–2918.CrossRefGoogle Scholar
  37. 37.
    N. Chouhan, R. Ameta, and R. K. Meena (2017). J. Mol. Liq. 230, 74–84.CrossRefGoogle Scholar
  38. 38.
    J. R. Koduru, S. K. Kailasa, J. R. Bhamore, K. H. Kim, T. Dutta, and K. Vellingiri (2018). Adv. Coll. Interface Sc. 256, 326–339.CrossRefGoogle Scholar
  39. 39.
    G. Benelli and M. Govindarajan (2017). J. Clust. Sci. 28, (1), 287–308.CrossRefGoogle Scholar
  40. 40.
    F. S. AlQahtani, M. M. AlShebly, M. Govindarajan, S. Senthilmurugan, P. Vijayan, and G. Benelli (2017). J. Asia Pac. Entomol. 20, (1), 157–164.CrossRefGoogle Scholar
  41. 41.
    K. Murugan, G. Benelli, S. Ayyappan, D. Dinesh, C. Panneerselvam, M. Nicoletti, J. S. Hwang, M. P. Kumar, J. Subramaniam, and U. Suresh (2015). Parasitol. Res. 114, (6), 22433.CrossRefGoogle Scholar
  42. 42.
    J. Singh, G. Kaur, P. Kaur, R. Bajaj, and M. Rawat (2016). World. J. Pharm. Pharm. Sci. 7, 730–762.Google Scholar
  43. 43.
    P. M. Kumar, K. Murugan, P. Madhiyazhagan, K. Kovendan, D. Amerasan, B. Chandramohan, D. Dinesh, U. Suresh, M. Nicoletti, M. S. Alsalhi, and S. Devanesan (2016). Parasitol. Res. 115, (2), 751–759.CrossRefGoogle Scholar
  44. 44.
    P. C. Nagajyothi, M. Pandurangan, D. H. Kim, T. V. M. Sreekanth, and J. Shim (2017). J. Clus. Sci. 28, (1), 245–257.CrossRefGoogle Scholar
  45. 45.
    T. V. M. Sreekanth, M. Pandurangan, D. H. Kim, and Y. R. Lee (2016). J. Clus. Sci. 27, (2), 671–681.CrossRefGoogle Scholar
  46. 46.
    M. Pandurangan, G. Enkhtaivan, J. A. Young, H. J. Hoon, H. Lee, S. Lee, and D. H. Kim (2016). Biol. Trace Elem. Res. 171, (2), 293–300.CrossRefGoogle Scholar
  47. 47.
    H. Kapoor, N. Yadav, M. Chopra, S. C. Mahapatra, and V. Agrawal (2017). Curr. Cancer Drug. Targ. 17, (1), 74–88.CrossRefGoogle Scholar
  48. 48.
    M. Pandurangan, G. Enkhtaivan, B. Venkitasamy, B. Mistry, R. Noorzai, B. Y. Jin, and D. H. Kim (2016). Biol. Trace Element. Res. 170, (2), 309–319.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Himanshu Saini
    • 1
  • Renuka Yadav
    • 1
  • Dinesh Kumar
    • 1
  • Gaurav Kumar
    • 2
  • Veena Agrawal
    • 1
    Email author
  1. 1.Medicinal Plant Biotechnology Lab, Department of BotanyUniversity of DelhiDelhiIndia
  2. 2.National Institute of Malaria ResearchDwarkaIndia

Personalised recommendations