Advertisement

Facile Biosynthesis of Tellurium Dioxide Nanoparticles by Streptomyces cyaneus Melanin Pigment and Gamma Radiation for Repressing Some Aspergillus Pathogens and Bacterial Wound Cultures

  • Gharieb S. El-SayyadEmail author
  • Farag M. Mosallam
  • Sobhy S. El-Sayed
  • Ahmed I. El-BatalEmail author
Original Paper
  • 46 Downloads

Abstract

Melanin pigment was attracted significant interest as a photo-protecting natural polymer which applied in different fields like nanotechnology, food processing and biomedicine. Streptomyces cyaneus is used for melanin biosynthesis after optimizing its medium requirements. Tellurium dioxide nanoparticles (TeO2 NPs) were biosynthesized by the optimized melanin and gamma rays at room temperature. TeO2 NPs were characterized by UV–Vis., XRD, FTIR, HRTEM, DLS, EDX, and SEM mapping analysis. Antimicrobial activity of TeO2 NPs was tested against some pathogenic fungi and bacteria. The non-controlled free radicals produced from gamma rays were stopped by the natural melanin (stabilizing and capping agent). A proposed reaction mechanism for TeO2 NPs production was investigated. Data received from HRTEM and DLS analysis were calculated the average particles size of the spherical TeO2NPs and were found to be 75.0 nm. TeO2 NPs possesses a promising antifungal potential towards Aspergillus flavus, Aspergillus niger, and Aspergillus fumigatus (30.0, 20.0, and 19.0 mm ZOI, respectively). As well, they have antibacterial potential against Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae (25.0, 18.0, and 15.0 mm ZOI, respectively). Based on TeO2 NPs characteristics as an encourage antimicrobial agent, it may be conducted as active ingredients in biomedicine, food processing and packaging and cosmetics.

Keywords

Tyrosinase Streptomyces cyaneus Tellurium dioxide nanoparticles Aspergillus flavus Pseudomonas aeruginosa Melanin pigment 

Notes

Acknowledgements

The authors would like to thank the Nanotechnology Research Unit (P.I. Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/Biotechnological and Irradiation Processes”. Also, the authors would like to thank Prof. Mohamed Gobara (Military Technical College, Egyptian Armed Forces), and Zeiss microscope team in Cairo for their invaluable advice during this study.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10876_2019_1629_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 11 kb)

References

  1. 1.
    A. A. Bell and M. H. Wheeler (1986). Annu. Rev. Phytopathol. 24, (1), 411–451.Google Scholar
  2. 2.
    H. Z. Hill (1992). BioEssays 14, (1), 49–56.Google Scholar
  3. 3.
    H. C. Eisenman and A. Casadevall (2012). Appl. Microbiol. Biotechnol. 93, (3), 931–940.Google Scholar
  4. 4.
    L. Wang, Y. Li, and Y. Li (2018). Int. J. Biol. Macromol. 123, 521–530.Google Scholar
  5. 5.
    K. Tarangini and S. Mishra (2013). Res. J. Eng. Sci. 2278, 9472.Google Scholar
  6. 6.
    G. S. El-Sayyad, F. M. Mosallam, and A. I. El-Batal (2018). Adv. Powder Technol. 29, (11), 2616–2625.Google Scholar
  7. 7.
    A. I. El-Batal, et al. (2017). J. Clust. Sci. 28, (3), 1083–1112.Google Scholar
  8. 8.
    A. I. El-Batal, et al. (2017). J. Photochem. Photobiol. B Biol. 173, 120–139.Google Scholar
  9. 9.
    E. Dadachova, et al. (2007). PLoS ONE 2, (5), e457.Google Scholar
  10. 10.
    A. El-Obeid, et al. (2006). Phytomedicine 13, (5), 324–333.Google Scholar
  11. 11.
    D. C. Montefiori and J. Zhou (1991). Antivir. Res. 15, (1), 11–25.Google Scholar
  12. 12.
    D. C. Rita and S. R. Pombeiro-Sponchiado (2005). Biol. Pharm. Bull. 28, (6), 1129–1131.Google Scholar
  13. 13.
    Y.-C. Hung, et al. (2002). Food Chem. 78, (2), 233–240.Google Scholar
  14. 14.
    Y. Hung, et al. (2003). Life Sci. 72, (9), 1061–1071.Google Scholar
  15. 15.
    V. Sava, et al. (2003). Food Res. Int. 36, (5), 505–511.Google Scholar
  16. 16.
    S. Dastager, et al. (2006). Afr. J. Biotechnol. 5, (11), 1131–1134.Google Scholar
  17. 17.
    K. F. Chater (1993). Ann. Rev. Microbiol. 47, (1), 685–711.Google Scholar
  18. 18.
    M. T. Shaaban, S. M. M. El-Sabbagh, and A. Alam (2013). Life Sci. J. 10, (1), 1437–1448.Google Scholar
  19. 19.
    K. Arshak and O. Korostynska (2002). Sensors 2, (8), 347–355.Google Scholar
  20. 20.
    M. Kastner and H. Fritzsche (1978). Philos. Mag. B 37, (2), 199–215.Google Scholar
  21. 21.
    L. A. Ba, et al. (2010). Org. Biomol. Chem. 8, (19), 4203–4216.Google Scholar
  22. 22.
    M. M. A. Elsoud, et al. (2018). Biotechnol. Rep. 18, e00247.Google Scholar
  23. 23.
    R. Borghese, et al. (2017). J. Hazard. Mater. 324, 31–38.Google Scholar
  24. 24.
    S. C. Cho, Y. C. Hong, and H. S. Uhm (2006). Chem. Phys. Lett. 429, (1–3), 214–218.Google Scholar
  25. 25.
    V. Nagarajan and R. Chandiramouli (2014). Comput. Theor. Chem. 1049, 20–27.Google Scholar
  26. 26.
    H.-Y. Wei, et al. (2009). Mater. Sci. Eng. B 164, (1), 51–59.Google Scholar
  27. 27.
    S. Hodgson and L. Weng (2000). J. Sol-Gel. Sci. Technol. 18, (2), 145–158.Google Scholar
  28. 28.
    T. Siciliano, et al. (2014). Sens. Actuators B Chem. 201, 138–143.Google Scholar
  29. 29.
    D. M. Cruz, et al. (2019). Green Chem. 21, 1982–1998.Google Scholar
  30. 30.
    P. K. Gupta, et al. (2016). Mater. Sci. Eng. B 211, 166–172.Google Scholar
  31. 31.
    M. A. Elkodous, et al. (2019). Colloids Surf. B Biointerfaces 180, 411–428.Google Scholar
  32. 32.
    M. Abd Elkodous, et al. (2019). J. Clust. Sci. 30, (3), 531–540.Google Scholar
  33. 33.
    L. Björkhem-Bergman, et al. (2010). PLoS ONE 5, (5), e10702.Google Scholar
  34. 34.
    S. Chowdhury (2012). Environ. Monit. Assess. 184, (10), 6087–6137.Google Scholar
  35. 35.
    C. H. Smith and R. D. Goldman (2012). Can. Fam. Physician 58, (12), 1350–1352.Google Scholar
  36. 36.
    A. I. El-Batal, et al. (2018). Microb. Pathog. 118, 159–169.Google Scholar
  37. 37.
    M. A. Klich (2009). Toxicol. Ind. Health 25, (9–10), 657–667.Google Scholar
  38. 38.
    D. W. Denning (1998). Clin. Infect. Dis. 26, 781–803.Google Scholar
  39. 39.
    H. Khalilullah, et al. (2012). Mini Rev. Med. Chem. 12, (8), 789–801.Google Scholar
  40. 40.
    L. B. Rice (2009). Curr. Opin. Microbiol. 12, (5), 476–481.Google Scholar
  41. 41.
    A. I. El-Batal, et al. (2019). J. Clust. Sci. 30, (4), 947–964.Google Scholar
  42. 42.
    A. I. El-Batal, et al. (2018). Int. J. Biol. Macromol. 107, 2298–2311.Google Scholar
  43. 43.
    A. F. El-Baz, et al. (2016). J. Basic Microbiol. 56, (5), 531–540.Google Scholar
  44. 44.
    M. S. Attia, et al. (2019). J. Clust. Sci. 30, (4), 919–935.Google Scholar
  45. 45.
    A. K. Pal, D. U. Gajjar, and A. R. Vasavada (2013). Med. Mycol. 52, (1), 10–18.Google Scholar
  46. 46.
    A. I. El-Batal, et al. (2019). J. Clust. Sci. 30, (3), 687–705.Google Scholar
  47. 47.
    A. I. El-Batal, F. M. Mosallam, and G. S. El-Sayyad (2018). J. Clust. Sci. 29, (6), 1003–1015.Google Scholar
  48. 48.
    A. El-Batal, et al. (2013). J. Chem. Pharm. Res. 5, (8), 1–15.Google Scholar
  49. 49.
    A. El-Batal, et al. (2014). Br. J. Pharm. Res. 4, (11), 1341.Google Scholar
  50. 50.
    M. A. Elkodous, et al. (2019). J. Mater. Sci. Mater. Electron. 30, (9), 8312–8328.Google Scholar
  51. 51.
    M. I. A. A. Maksoud, et al. (2019). J. Mater. Sci. Mater. Electron. 30, (5), 4908–4919.Google Scholar
  52. 52.
    M. I. A. Abdel Maksoud, et al. (2019). J. Sol-Gel Sci. Technol. 90, (3), 631–642.Google Scholar
  53. 53.
    M. A. Maksoud, et al. (2018). Mater. Sci. Eng. C 92, 644–656.Google Scholar
  54. 54.
    A. Ashour, et al. (2018). Particuology 40, 141–151.Google Scholar
  55. 55.
    A. Baraka, et al. (2017). Chem. Pap. 71, (11), 2271–2281.Google Scholar
  56. 56.
    F. M. Mosallam, et al. (2018). Microb. Pathog. 122, 108–116.Google Scholar
  57. 57.
    M. I. A. A. Maksoud, et al. (2019). Microb. Pathog. 127, 144–158.Google Scholar
  58. 58.
    M. Ghorab, et al. (2016). Br. Biotechnol. J. 16, (1), 1–25.Google Scholar
  59. 59.
    A. I. El-Batal, A.-A. M. Hashem, and N. M. Abdelbaky (2013). SpringerPlus 2, (1), 129.Google Scholar
  60. 60.
    K. Brownlee (1952). JSTOR 47, 687–691.Google Scholar
  61. 61.
    I. Ahmed (2016). Der Pharm. Lett. 8, (2), 315–333.Google Scholar
  62. 62.
    C. A. Ramsden and P. A. Riley (2010). ARKIVOC 1, 260–274.Google Scholar
  63. 63.
    D. Majidi and N. Aksöz (2013). Am. J. Microbiol. Res. 1, (1), 1–3.Google Scholar
  64. 64.
    K. Haneda, S. Watanabe, and I. Takeda (1973). J. Ferment. Technol. Google Scholar
  65. 65.
    T. Chevalier, et al. (1999). Plant Physiol. 119, (4), 1261–1270.Google Scholar
  66. 66.
    A. M. Amal, et al. (2011). Res. J. Chem. Sci. 2231, 606X.Google Scholar
  67. 67.
    I. Ulukus (1984). J. Turk. Phytopathol. 13, (2), 53–61.Google Scholar
  68. 68.
    J. Spížek and P. Tichý (1995). Folia Microbiol. 40, (1), 43–50.Google Scholar
  69. 69.
    J. L. Doull and L. C. Vining (1990). Appl. Microbiol. Biotechnol. 32, (4), 449–454.Google Scholar
  70. 70.
    P. Jamal, O. K. Saheed, and Z. Alam (2012). Asian J. Biotechnol. 4, 1–14.Google Scholar
  71. 71.
    M. Saastamoinen, M. Eurola, and V. Hietaniemi (2013). J. Agric. Sci. Technol. B 3, (2B), 92.Google Scholar
  72. 72.
    Y. Lingappa, A. S. Sussman, and I. A. Bernstein (1963). Mycopathologia 20, (1), 109–128.Google Scholar
  73. 73.
    M. Niederberger and N. Pinna Metal Oxide Nanoparticles in Organic Solvents Synthesis, Formation, Assembly and Application (Springer Science & Business Media, Berlin, 2009).Google Scholar
  74. 74.
    G. V. Buxton, et al. (1988). J. Phys. Chem. Ref. Data 17, (2), 513–886.Google Scholar
  75. 75.
    B. I. Kharisov, O. V. Kharissova, and U. O. Méndez, Radiation Synthesis of Materials and Compounds (CRC Press, Boca Raton, 2016).Google Scholar
  76. 76.
    E. Watson and S. Roy, Selected Specific Rates of Reactions of the Solvated Electron in Alcohols, vol. 42 (National Bureau of Standards, Gaithersburg, 1972).Google Scholar
  77. 77.
    J. Jortner and R. M. Noyes (1966). J. Phys. Chem. 70, (3), 770–774.Google Scholar
  78. 78.
    M. Bailey and R. Dixon (1971). Can. J. Chem. 49, (17), 2909–2912.Google Scholar
  79. 79.
    J.-Y. Xia, et al. (2012). Trans. Nonferrous Met. Soc. China 22, (9), 2289–2294.Google Scholar
  80. 80.
    M. Patil, et al. (2005). Mater. Lett. 59, (19), 2523–2525.Google Scholar
  81. 81.
    E. Bartonickova, J. Cihlar, and K. Castkova (2007). Process. Appl. Ceram. 1, (1), 2.Google Scholar
  82. 82.
    N. T. Thanh, N. Maclean, and S. Mahiddine (2014). Chem. Rev. 114, (15), 7610–7630.Google Scholar
  83. 83.
    D. Ellis and D. Griffiths (1974). Can. J. Microbiol. 20, (10), 1379–1386.Google Scholar
  84. 84.
    V. Vasanthabharathi, R. Lakshminarayanan, and S. Jayalakshmi (2011). Afr. J. Biotechnol. 10, (54), 11224.Google Scholar
  85. 85.
    A. L. Gajengi, T. Sasaki, and B. M. Bhanage (2017). Adv. Powder Technol. 28, (4), 1185–1192.Google Scholar
  86. 86.
    S. Tanveer, et al. (2014). J. Chin. Chem. Soc. 61, (5), 525–532.Google Scholar
  87. 87.
    N. Aydin, et al. (2017). Biomed. Res. 28, (7), 3300–3304.Google Scholar
  88. 88.
    T. Jin and Y. He (2011). J. Nanopart. Res. 13, (12), 6877–6885.Google Scholar
  89. 89.
    Y. He, et al. (2016). J. Nanobiotechnol. 14, (1), 54.Google Scholar
  90. 90.
    Z.-X. Tang and B.-F. Lv (2014). Braz. J. Chem. Eng. 31, (3), 591–601.Google Scholar
  91. 91.
    L. Huang, et al. (2005). Chin. Sci. Bull. 50, (6), 514–519.Google Scholar
  92. 92.
    L. Huang, et al. (2005). J. Inorg. Biochem. 99, (5), 986–993.Google Scholar
  93. 93.
    O. Yamamoto, et al. (2001). J. Ceram. Soc. Jpn. 109, (1268), 363–365.Google Scholar
  94. 94.
    Y.-J. Lin, et al. (2009). J. Mater. Sci. Mater. Med. 20, (2), 591–595.Google Scholar
  95. 95.
    O. Yamamoto, et al. (2010). Mater. Sci. Eng. B 173, (1), 208–212.Google Scholar
  96. 96.
    J. Pi, et al. (2013). Bioorg. Med. Chem. Lett. 23, (23), 6296–6303.Google Scholar
  97. 97.
    Z. H. Lin, et al. (2012). Chem. Asian J. 7, (5), 930–934.Google Scholar
  98. 98.
    E. Zonaro, et al. (2015). Front. Microbiol. 6, 584.Google Scholar
  99. 99.
    M. Arakha, et al. (2015). Sci. Rep. 5, 14813.Google Scholar
  100. 100.
    B. Zare, et al. (2012). Mater. Res. Bull. 47, (11), 3719–3725.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Drug Microbiology Laboratory, Drug Radiation Research Department, Biotechnology DivisionNational Center for Radiation Research and Technology (NCRRT), Atomic Energy AuthorityCairoEgypt

Personalised recommendations