Biomolecules Derived from Carissa edulis for the Microwave Assisted Synthesis of Ag2O Nanoparticles: A Study Against S. incertulas, C. medinalis and S. mauritia

  • J. Fowsiya
  • G. MadhumithaEmail author
Original Paper


The green method for metal nanoparticles has been gaining more interest owing to its low cost and safe nature. The Carissa edulis (C. edulis) dried fruit extract was utilized for the synthesis silver oxide nanoparticles (Ag2O NPs). The microwave extraction process was optimized using Box-Behnken Design (BBD). The good optimization was found to be 400 W, 70 °C and 30 mL of solvent. We have observed 0.17 g of extract yield from this method. The green synthesized Ag2O NPs were analyzed by various analytical techniques. The absorption peak around 420 nm confirms the formation of Ag2O NPs. Further, the SEM and TEM results showed cube and ellipsoid shape with 1.5–2 nm. The Photocatalytic of Ag2O NPs showed 95.8% of degradation of Congo red with rate constant of 0.0233 min−1 and the antibacterial activity of Ag2O NPs was showed high zone of inhibition (10 mm) against E. coli. Therefore, C. edulis extract mediated Ag2O NPs can be used to carry further research in environmental science and biotechnology.


Carissa edulis Silver oxide nanoparticles Dye degradation Antibacterial activity Insecticidal activity 



The authors gratefully thankful to VIT, Vellore for the support and proving Analytical instruments to carried out the research work. The authors also acknowledge the DST-SERB (FTYS-SB/FT/CS-113/2013) and SEED money fund from VIT University, Vellore for providing financial support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10876_2019_1627_MOESM1_ESM.docx (4.6 mb)
Supplementary material 1 (DOCX 4706 kb)


  1. 1.
    C. H. Wu and C. L. Chang (2015). J. Hazard. Mater. 128, 265.Google Scholar
  2. 2.
    I. T. Peternel, N. Koprivanac, A. M. Bozic, and H. M. Kusic (2007). J. Hazard. Mater. 148, 477.Google Scholar
  3. 3.
    A. L. Linsebigler, L. Guangquan, and Y. T. John (1995). Chem. Rev. 95, 735.Google Scholar
  4. 4.
    N. Daneshvar, D. Salari, and A. R. Khataee (2004). J. Photochem. Photobiol A: Chem 162, 317.Google Scholar
  5. 5.
    K. Akihiko, K. Hideki, and T. Issei (2004). Chem. Lett. 33, 1534.Google Scholar
  6. 6.
    A. O. Kondrakov, A. N. Ignatev, V. V. Lunin, F. H. Frimmel, S. Braese, and H. Horn (2016). Appl. Cat B: Environ. 182, 424.Google Scholar
  7. 7.
    A. O. Kondrakov, A. N. Ignatev, F. H. Frimmel, S. Braese, H. Horn, and A. L. Revelsky (2014). Appl. Cat B: Environ. 160, 106.Google Scholar
  8. 8.
    I. V. Kostedt, L. William, J. Drwiega, W. M. David, W. L. Seung, S. Wolfgang, Y. W. Chang, and C. Paul (2005). Environ. Sci. Technol. 39, 8052.Google Scholar
  9. 9.
    M. A. Rauf and S. S. Ashraf (2009). Chem. Eng. J. 151, 10.Google Scholar
  10. 10.
    L. M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, J. L. Figueiredo, J. L. Faria, and P. Falaras (2012). Appl. Cat. B: Environ. 19, 3676.Google Scholar
  11. 11.
    Q. W. Shu, J. Lan, M. X. Gao, J. Wangb, and C. Z. Huang (2015). CrystEngComm. 17, 1374.Google Scholar
  12. 12.
    S. R. Couto (2009). Adv. 27, 227.Google Scholar
  13. 13.
    M. Anas, D. S. Han, K. Mahmoud, H. Park, and A. A. Wahab (2016). Mater. Sci. Semicond. Process. 41, 209.Google Scholar
  14. 14.
    K. M. Reza, A. S. W. Kurny, and F. Gulshan (2017). Appl. Water. Sci. 7, 1569.Google Scholar
  15. 15.
    B. Viswanathan (2018). Currn. Cat. 7.
  16. 16.
    C. McCullagh, J. M. Robertson, D. W. Bahnemann, and P. K. Robertson (2007). Res. Chem. Intermed. 33, 359.Google Scholar
  17. 17.
    A. H. Dorian and C. C. Sorrell (2014). Adv. Eng. Mater. 16, 248.Google Scholar
  18. 18.
    S. Y. Zhu and B. Yan (2018). New. J. Chem 42, 4394.Google Scholar
  19. 19.
    B. Bharati, A. K. Sonkar, N. Singh, D. Dash, and C. Rath (2017). Mater. Res. Exp. 4, 085503.Google Scholar
  20. 20.
    J. T. Rajesh, P. K. Surolia, R. G. Kulkarni, and R. V. Jasra (2007). Sci. Technol. Adv. Mater. 8, 455.Google Scholar
  21. 21.
    T. Aarthi and G. Madras (2007). Ind. Eng. Chem. Res. 46, 7.Google Scholar
  22. 22.
    A. Balcha, O. P. Yadav, and T. Dey (2016). Environ. Sci. Pollut. Res. Int. 23, 25485.Google Scholar
  23. 23.
    I. J. Peter, E. Praveen, G. Vignesh, and P. Nithiananthi (2017). Mater. Res. Exp. 4, 124003.Google Scholar
  24. 24.
    M. Faraz, F. K. Naqvi, M. Shakir, and N. Khare (2018). New. J. Chem. 42, 2295.Google Scholar
  25. 25.
    M. Pirsaheb, B. Shahmoradi, M. Beikmohammadi, E. Azizi, H. Hossini, and G. M. Ashraf (2017). Sci. Rep. 7, 1473.Google Scholar
  26. 26.
    R. M. Kumari, N. Thapa, N. Gupta, A. Kumar, and S. Nimesh (2016). Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 045009.Google Scholar
  27. 27.
    B. S. Bhakya, S. Muthukrishnan, M. Sukumaran, M. Muthukumaran, T. Senthil Kumar, and M. V. Rao (2015). J. Bioremed. Biodeg. 6, 1.Google Scholar
  28. 28.
    M. Vanaja, K. Paulkumar, M. Baburaja, S. Rajeshkumar, G. Gnanajobitha, C. Malarkodi, M. Sivakavinesan and G. Annadurai (2014). Bioinorg. Chem. Appl. 742346.Google Scholar
  29. 29.
    S. Iravani, H. Korbekandi, S. V. Mirmohammadi, and B. Zolfaghari (2014). Res. Pharm. Sci. 9, 385.Google Scholar
  30. 30.
    N. Rajput (2015). Int. J. Adv. Eng. Technol. 7, 1806.Google Scholar
  31. 31.
    H. Schmidt (2001). Appl. Organometallic. Chem. 15, 331.Google Scholar
  32. 32.
    V. V. Makarov, A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina (2014). Acta. Nat. 6, 35.Google Scholar
  33. 33.
    S. Ahmed, M. Ahmad, B. L. Swami, and S. A. Ikram (2016). J. Adv. Res. 7, 17.Google Scholar
  34. 34.
    J. R. Peralta-Videa, Y. Huang, J. G. Parsons, L. Zhao, L. L. Moreno, J. A. Hernandez-Viezcas, and J. L. Gardea-Torresdey (2016). Nanotechnol. Environ. Eng. 1, 4.Google Scholar
  35. 35.
    I. Hussain, N. B. Singh, A. Singh, H. Singh, and S. C. Singh (2016). Biotechnol. Lett. 38, 545.Google Scholar
  36. 36.
    M. Rafique, I. Sadaf, M. S. Rafique, and M. B. Tahir (2017). Artif. Cells. Nanomed. Biotechnol. 45, 1272.Google Scholar
  37. 37.
    S. Jain and M. S. Mehata (2017). Sci. Rep. 7, 15867.Google Scholar
  38. 38.
    D. Mubarakali, N. Thajuddin, K. Jeganathan, and M. Gunasekaran (2011). Colloids. Surf. B Interface. 85, 360.Google Scholar
  39. 39.
    L. S. B. Upadhyay and N. Verma (2015). Anal. Lett. 48, 2676.Google Scholar
  40. 40.
    G. Premanand, N. Shanmugam, N. Kannadasan, K. Sathishkumar, and G. Viruthagiri (2016). Appl. Nanosci. 6, 409.Google Scholar
  41. 41.
    S. Francis, S. Joseph, E. P. Koshy, and B. Mathew (2017). Artif. Cells. Nanomed. Biotechnol. 6, 1.Google Scholar
  42. 42.
    M. Praveen, F. Ahmad, A. M. Malla, and S. Azaz (2016). Appl. Nanosci. 6, 267.Google Scholar
  43. 43.
    G. A. Kahrilas, L. M. Wally, S. J. Fredrick, M. Hiskey, A. L. Prieto, and J. E. Owens (2014). ACS. Sustainable Chem. Eng. 2, 367.Google Scholar
  44. 44.
    R. Roopesh, K. Geedhika, J. D’Souza, S. Anandhan, U. K. Bhat, and M. J. Jaya (2016). J. Exp. Nanosci. 11, 840.Google Scholar
  45. 45.
    L. Wang and C. L. Weller (2006). Trend. Food Sci. Technol. 17, 300.Google Scholar
  46. 46.
    H. F. Zhang, X. H. Yang, and Y. Wang (2011). Trends. Food Sci. Technol. 22, 672.Google Scholar
  47. 47.
    B. Kaufmann and P. Christen (2002). Phytochem. Anal. 13, 105.Google Scholar
  48. 48.
    R. Thangam, V. Suresh, and S. Kannan (2014). Int. J. Biol. Macromol. 65, 415.Google Scholar
  49. 49.
    Y. Li, A. S. F. Tixier, M. A. Vian, and F. Chermat (2013). Trends. Anal. Chem. 47, 1.Google Scholar
  50. 50.
    C. Y. Gan and A. A. Latiff (2011). Food. Chem. 124, 1277.Google Scholar
  51. 51.
    N. Illaiyaraja, K. R. Likhith, G. R. SharathBabu, and F. Khanum (2015). Food. Chem. 173, 348.Google Scholar
  52. 52.
    A. Sood and M. Gupta (2015). Food. Biosci. 12, 100.Google Scholar
  53. 53.
    J. Fowsiya, G. Madhumitha, N. A. Al-Dhabi, and M. V. Arasu (2016). J. Photochem. Photobiol. B: Biol. 162, 395.Google Scholar
  54. 54.
    T. V. Surendra, S. M. Roopan, M. V. Arasu, N. A. Al-Dhabi, and G. M. Rayalu (2016). J. Photochem. Photobiol. B: Biol. 162, 550.Google Scholar
  55. 55.
    A. K. Genevieve, L. M. Wally, S. J. Fredrick, M. Hiskey, A. L. Prieto, and J. E. Owens (2014). Chem. Eng. 21, 367.Google Scholar
  56. 56.
    H. Kolya, P. Maiti, A. Pandey, and T. Tripathy (2015). J. Appl. Sci. Technol. 6, 33.Google Scholar
  57. 57.
    K. Jyoti and A. Singh (2016). J. Genetic. Eng. Biotechnol. 14, 311.Google Scholar
  58. 58.
    P. Logeswari, S. Silambarasan, and J. Abraham (2015). J. Saudi. Chem. Soc. 19, 311.Google Scholar
  59. 59.
    E. E. Elemike, D. C. Onwudiwe, A. C. Ekennia, C. U. Sonde, and R. C. Ehiri (2017). Molecules. 22, 674.Google Scholar
  60. 60.
    P. M. Vinayaga, C. Balasubramanian, and S. Mohan (2015). Appl. Biochem. Biotechnol. 175, 135.Google Scholar
  61. 61.
    S. Chowdhury, F. Yusof, M. Omer Faruck, and N. Sulaiman (2016). Procedia. Eng. 148, 992.Google Scholar
  62. 62.
    O. N. Erick and M. N. Padmanabhan (2015). Spectrochim. Acta. A. Molecul. Biomolecul. Spectorscopy. 149, 978.Google Scholar
  63. 63.
    A. Fakhri (2014). J. Saud. Chem. Soc. 18, 340.Google Scholar
  64. 64.
    A. M. Othman, M. A. Elsayed, A. M. Elshafei, and M. M. Hassan (2017). J. Genetic. Eng. Biotechnol. 15, 497.Google Scholar
  65. 65.
    O. Karhan, O. B. Ceran, O. N. Sara, and B. Simsek (2017). Ind. Eng. Chem. Res. 56, 8180.Google Scholar
  66. 66.
    Y. S. Chan, M. D. Mashitah, and J. Korean (2013). Soc. Appl. Biol. Chem. 56, 11.Google Scholar
  67. 67.
    J. Santhoshkumar, S. Venkat Kumar, and S. Rajeshkumar (2017). Resource. Eff. Technol. 3, 459.Google Scholar
  68. 68.
    G. Sangeetha, S. Rajeshwari, and R. Venckatesh (2011). Mater. Res. Bull. 46, 2560.Google Scholar
  69. 69.
    S. K. Chaudhuri and L. Malodia (2017). App. Nanosci. 7, 501.Google Scholar
  70. 70.
    K. K. Panda, D. Golari, A. Venugopal, V. M. M. Achary, G. Phaomei, N. L. Parinandi, H. K. Sahu, and B. B. Panda (2017). Antioxid. 6, 35.Google Scholar
  71. 71.
    M. H. Koupaei, B. Shareghi, A. A. Saboury, F. Davar, A. Semnani, and M. Evini (2016). RSC. Adv. 6, 42313.Google Scholar
  72. 72.
    T. M. Elmorsi, M. H. Elsayed, and M. F. Bakr (2017). Am. J. Chem. 7, 48.Google Scholar
  73. 73.
    D. Titus, and E. J. J. Samuel (2019). J. Cluster. Sci. 1.
  74. 74.
    A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, H. S. Mohd Bakhori, K. Hasan, and D. Mohamad (2015). Nano. Micro. Lett. 7, 219.Google Scholar
  75. 75.
    Y. Xie, H. Yiping, P. L. Irwin, T. Jin, and X. Shi (2011). Appl. Environ. Microbiol. 77, 2325.Google Scholar
  76. 76.
    Y. Liu, L. He, A. Mustapha, H. Li, Z. Q. Hu, and M. Lin (2009). J. Appl. Microbiol. 107, 1193.Google Scholar
  77. 77.
    C. G. Athanassiou, N. G. Kavallieratos, G. Benelli, D. Losic, P. R. Usha, and N. Desneux (2018). J. Pest. Sci. 91, 1.Google Scholar
  78. 78.
    C. Volker, M. Oetken, and J. Oehlmann (2013). Rev. Environ. Contam. Toxicol. 223, 81.Google Scholar
  79. 79.
    G. Benelli (2018). Environ. Sci. Poll. Res. 25, 12329.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced SciencesVellore Institute of TechnologyVelloreIndia

Personalised recommendations