Phytosynthesis, Characterization and Fungicidal Potential of Emerging Gold Nanoparticles Using Pongamia pinnata Leave Extract: A Novel Approach in Nanoparticle Synthesis

  • Ashapurna Khatua
  • Eepsita Priyadarshini
  • Paulraj Rajamani
  • Amiyakumar Patel
  • Jitender Kumar
  • Aparupa Naik
  • Muthupandian SaravananEmail author
  • Hamed Barabadi
  • Abhinav Prasad
  • llora Ghosh
  • Bernard Paul
  • Ramovatar MeenaEmail author
Original Paper


Biomediated synthesis of gold nanoparticles (AuNPs) using plant extract is a favorable alternative to traditional physicochemical based methods. Biological synthesis assists in the generation of stable and biocompatible nanoparticles (NPs). The aim of the present work was to fabricate AuNPs using Pongamia pinnata leave extract. The synthesized AuNPs were characterized by various analytical techniques such as UV–visible spectroscopy, TEM, EDX, and XRD. Absorption spectra showed SPR peaks in the range of 520–540 nm signifying the formation of AuNPs stabilized by P. pinnata extract. The average size of NPs was found in the range 10–25 nm as obtained from TEM analysis. Moreover, the synthesized NPs showed antifungal activity. The antifungal activities of AuNPs were tested against oomycetes SR1 and BP1120. The MIC80 value was observed at the concentrations 1.6 and 0.8 mg/mL of AuNPs in SR1 and BP1120 fungus, respectively. The study revealed an efficient, eco-friendly and simple method for synthesis of stable AuNPs using green synthetic approach.


Nanobiotechnology Phytosynthesis Gold nanoparticles Antifungal activity 



The authors are grateful to AIRF, JNU for analytical characterization. EP is grateful to DST-SERB for fellowship under National Postdoctoral Scheme (Grant Number: PDF/2017/0024). We thank our colleague Dr. Usha Singh and other colleagues who provided insight and expertise that greatly assisted the research, this study was supported by grants from the project Boron capture therapy in cancer diagnosis.


  1. 1.
    C. T. Laurencin, S. G. Kumbar, and S. P. Nukavarapu (2009). Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 6.CrossRefGoogle Scholar
  2. 2.
    H. Barabadi, F. Kobarfard, and H. Vahidi (2018). Iran J. Pharm. Res. 17, 87.Google Scholar
  3. 3.
    H. Barabadi (2017). Cell. Mol. Biol. 63, 3.CrossRefGoogle Scholar
  4. 4.
    S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, 17.CrossRefGoogle Scholar
  5. 5.
    Q. Abbas, M. Saleem, A. R. Phull, M. Rafiq, M. Hassan, K.-H. Lee, and S.-Y. Seo (2017). Iran J. Pharm. Res. 16, 760.Google Scholar
  6. 6.
    R. Dobrucka (2017). Iran J. Pharm. Res. 16, 753.Google Scholar
  7. 7.
    N. Karimi, A. Chardoli, and A. Fattahi (2017). Iran J. Pharm. Res. 16, 1167.Google Scholar
  8. 8.
    M. M. Or Rashid, M. S. Islam, M. A. Haque, M. A. Rahman, M. T. Hossain, and M. A. Hamid (2016). Iran J. Pharm. Res. 15, 591.Google Scholar
  9. 9.
    S. Salari, S. Esmaeilzadeh Bahabadi, A. Samzadeh-Kermani, and F. Yousefzaei (2019). Iran J. Pharm. Res. 18, 430.Google Scholar
  10. 10.
    T. Ramezani, M. Nabiuni, J. Baharara, K. Parivar, and F. Namvar (2019). Iran J. Pharm. Res. 18, 222.Google Scholar
  11. 11.
    M. Maham and R. Karami-Osboo (2017). Iran J. Pharm. Res. 16, 462.Google Scholar
  12. 12.
    Z. Rezvani Amin, Z. Khashyarmanesh, B. S. Fazly Bazzaz, and Z. Sabeti Noghabi (2019). Iran J. Pharm. Res. 18, 210.Google Scholar
  13. 13.
    H. Barabadi, B. Tajani, M. Moradi, K. Damavandi Kamali, R. Meena, S. Honary, M. A. Mahjoub, and M. Saravanan (2019). J. Clust. Sci.. Scholar
  14. 14.
    S. Honary, H. Barabadi, P. Ebrahimi, F. Naghibi, and A. Alizadeh (2015). J. Nano Res. 30, 106.CrossRefGoogle Scholar
  15. 15.
    H. Barabadi and S. Honary (2016). Pharm. Biomed. Res. 2, 1.Google Scholar
  16. 16.
    M. Saravanan, S. Arokiyaraj, T. Lakshmi, and A. Pugazhendhi (2018). Microb. Pathog. 117, 68.CrossRefGoogle Scholar
  17. 17.
    S. A. Dahoumane, M. Mechouet, K. Wijesekera, C. D. M. Filipe, C. Sicard, D. A. Bazylinski, and C. Jeffryes (2017). Green Chem. 19, 552.CrossRefGoogle Scholar
  18. 18.
    M. Faraday (1857). Lond. Edinb. Dubl. Philos. Mag. 14, 512.CrossRefGoogle Scholar
  19. 19.
    A. Nel, T. Xia, L. Madler, and N. Li (2006). Science 311, 622.CrossRefGoogle Scholar
  20. 20.
    R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, and W. J. Parak (2008). Chem. Soc. Rev. 37, 1896.CrossRefGoogle Scholar
  21. 21.
    M. Ovais, A. T. Khalil, A. Raza, M. A. Khan, I. Ahmad, N. U. Islam, M. Saravanan, M. F. Ubaid, M. Ali, and Z. K. Shinwari (2016). Nanomedicine (Lond.) 11, 3157.CrossRefGoogle Scholar
  22. 22.
    R. K. Singh, G. Nath, S. B. Acharya, and R. K. Goel (1997). Indian J. Exp. Biol. 35, 831.Google Scholar
  23. 23.
    R. Sankaranarayanan and J. Ferlay (2006). Best. Pract. Res. Clin. Obstet. Gynaecol. 20, 207.CrossRefGoogle Scholar
  24. 24.
    N. Munoz, F. X. Bosch, S. de Sanjose, R. Herrero, X. Castellsague, K. V. Shah, P. J. Snijders, and C. J. Meijer (2003). N. Engl. J. Med. 348, 518.CrossRefGoogle Scholar
  25. 25.
    R. K. Singh, V. K. Joshi, R. K. Goel, S. S. Gambhir, and S. B. Acharya (1996). Indian J. Exp. Biol. 34, 1204.Google Scholar
  26. 26.
    T. S. Ramakrishnan and C. K. Sowmini (1955). Indian Phytopath. 7, 152.Google Scholar
  27. 27.
    C. Ushamalini, P. Nakkeeran, and T. Marimuthu (2008). Arch. Phytopathol. Plant Protect. 41, 79.CrossRefGoogle Scholar
  28. 28.
    N. Radhakrishnan and R. Balasubramanian (2009). Crop Protect. 28, 974.CrossRefGoogle Scholar
  29. 29.
    C. Kole, P. Kole, K. M. Randunu, P. Choudhary, R. Podila, P. C. Ke, A. M. Rao, and R. K. Marcus (2013). BMC Biotechnol. 13, 37.CrossRefGoogle Scholar
  30. 30.
    F. Ghazizadeh, S. Ghaffari, S. F. Mirshojaei, M. Mazidi, and S. Azarmi (2018). Iran J. Pharm. Res. 17, 1209.Google Scholar
  31. 31.
    H. Sobhani, P. Tarighi, S. N. Ostad, A. Shafaati, N. Nafissi-Varcheh, and R. Aboofazeli (2018). Iran J. Pharm. Res. 17, 830.Google Scholar
  32. 32.
    G. M. L. Consoli, G. Granata, R. Picciotto, A. R. Blanco, C. Geraci, A. Marino, and A. Nostro (2018). Medchemcomm 9, 160.CrossRefGoogle Scholar
  33. 33.
    H. E. Karahan, L. Wei, K. Goh, Z. Liu, O. Birer, F. Dehghani, C. Xu, J. Wei, and Y. Chen (2016). Nanoscale 8, 17181.CrossRefGoogle Scholar
  34. 34.
    W. Haiss, N. T. Thanh, J. Aveyard, and D. G. Fernig (2007). Anal. Chem. 79, 4215.CrossRefGoogle Scholar
  35. 35.
    C. Karuppiah, S. Palanisamy, S.-M. Chen, R. Emmanuel, K. Muthupandi, and P. Prakash (2015). RSC Adv. 5, 16284.CrossRefGoogle Scholar
  36. 36.
    G. Frens (1973). Nat. Phys. Sci. 241, 20.CrossRefGoogle Scholar
  37. 37.
    S. Park, H. Chibli, J. Wong, and J. L. Nadeau (2011). Nanotechnology 22, 185101.CrossRefGoogle Scholar
  38. 38.
    S. Nath, C. Kaittanis, A. Tinkham, and J. M. Perez (2008). Anal. Chem. 80, 1033.CrossRefGoogle Scholar
  39. 39.
    S. Ray, R. Mohan, J. K. Singh, M. K. Samantaray, M. M. Shaikh, D. Panda, and P. Ghosh (2007). J. Am. Chem. Soc. 129, 15042.CrossRefGoogle Scholar
  40. 40.
    R. Langer and D. A. Tirrell (2004). Nature 428, 487.CrossRefGoogle Scholar
  41. 41.
    T. M. Allen and P. R. Cullis (2004). Science 303, 1818.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Institute Jules GuyotUniversite de BourgogneDijonFrance
  3. 3.School of Biotechnology and BioinformaticsSambalpur UniversitySambalpurIndia
  4. 4.Baba Haridas College of Pharmacy and TechnologyNew DelhiIndia
  5. 5.Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health SciencesMekelle UniversityTigrayEthiopia
  6. 6.School of PharmacyShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations