Solvent-Free Cyanosilylation of Aldehydes and Anti-cervical Cancer Activity of a Highly Porous Zinc-MOF

  • Rong Li
  • Yan-Na Yue
  • Jing Sun
  • Ye Fang
  • Xiao-Hong Ge
  • Li-Ping ZhangEmail author
Original Paper


A new three-dimensional (3D) zinc(II) metal–organic framework (MOF) {[Zn2(abtc)(H2O)3](DMA)}n bearing the rigid organic ligand 3,3′,5,5′-azobenzene-tetracarboxylic acid (H4abtc) were prepared by reaction of zinc(II) nitrate and H4abtc in a mixed solvent of DMA and water at 80 °C for 3 days. Compared with pristine hydrated 1, the dehydrated 1a exhibits highly efficient catalytic activity for cyanosilylation of carbonyl compounds with a low catalyst loading of 0.1 mol% at room temperature under solvent-free conditions, which due to the open Zn2+ sites as catalytically activated sites played a significant role in the heterogeneous catalytic process. Based on the experimental results, a possible reaction mechanism has also been proposed. Next, the inhibitory effect of compound 1a on Hela cervical cancer cell viability was evaluated by CCK-8 assay, and the percentage of cell cycles was determined in flow cytometry. Besides, the transwell assay also performed to detect the effect of compound 1a on cell migration and invasion.


Metal–organic framework Open metal sites Porous framework Cyanosilylation reaction 


Supplementary material

10876_2019_1615_MOESM1_ESM.cif (523 kb)
Supplementary material 1 (CIF 522 kb)


  1. 1.
    N. Kurono and T. Ohkuma (2016). ACS Catal. 6, 989.CrossRefGoogle Scholar
  2. 2.
    A. Karmakar, G. M. D. M. Rúbio, A. Paul, M. F. C. Guedes da Silva, K. T. Mahmudov, F. I. Guseinov, S. A. C. Carabineiro, and A. J. L. Pombeiro (2017). Dalton Trans. 46, 8649.CrossRefGoogle Scholar
  3. 3.
    Z. Ma, A. V. Gurbanov, M. Sutradhar, M. N. Kopylovich, K. T. Mahmudov, A. M. Maharramov, F. I. Guseinov, F. I. Zubkov, and A. J. L. Pombeiro (2017). Mol. Catal. 428, 17.CrossRefGoogle Scholar
  4. 4.
    A. V. Gurbanov, K. T. Mahmudov, M. Sutradhar, F. C. Guedes da Silva, T. A. Mahmudov, F. I. Guseinov, F. I. Zubkov, A. M. Maharramov, and A. J. L. Pombeiro (2017). J. Organomet. Chem. 834, 22.CrossRefGoogle Scholar
  5. 5.
    A. G. Mahmoud, K. T. Mahmudov, M. F. C. Guedes da Silva, and A. J. L. Pombeiro (2016). RSC Adv. 6, 54263.CrossRefGoogle Scholar
  6. 6.
    Y. Feng, H. Fan, Z. Zhong, H. Wang, and D. Qiu (2016). Inorg. Chem. 55, 11987.CrossRefGoogle Scholar
  7. 7.
    Y. Feng, M. Li, H. Fan, Q. Huang, D. Qiu, and H. Shi (2015). Dalton Trans. 44, 894.CrossRefGoogle Scholar
  8. 8.
    Y. Y. Yang, L. Kang, and H. Li (2019). Ceram. Int. 45, 8017.CrossRefGoogle Scholar
  9. 9.
    Y. Yang, H. Li, W. Zheng, Y. Bai, Z. Liu, and J. Zhang (2019). Sci. Adv. Mater. 11, 208.CrossRefGoogle Scholar
  10. 10.
    C. Duan, H. Zhang, F. Li, J. Xiao, S. Luo, and H. Xi (2018). Soft Matter 14, 9589.CrossRefGoogle Scholar
  11. 11.
    C. Duan, F. Li, M. Yang, H. Zhang, Y. Wu, and H. Xi (2018). Ind. Eng. Chem. Res. 57, 15385.Google Scholar
  12. 12.
    L. Kang, H. L. Du, X. Du, H. T. Wang, W. L. Ma, M. L. Wang, and F. B. Zhang (2018). Desalin. Water Treat. 125, 296.CrossRefGoogle Scholar
  13. 13.
    H. T. Zhao, X. L. Mu, C. H. Zheng, S. J. Liu, Y. Q. Zhu, X. Gao, and T. Wu (2019). J. Hazard. Mater. 366, 240.CrossRefGoogle Scholar
  14. 14.
    L. Niu, J. L. Xu, W. L. Yang, C. H. Kang, J. Q. Ma, and J. Q. Su (2019). Sci. Adv. Mater. 11, 466.CrossRefGoogle Scholar
  15. 15.
    Y. Gao, S. Li, Y. Li, L. Yao, and H. Zhang (2017). Appl. Catal. B Environ. 202, 165.CrossRefGoogle Scholar
  16. 16.
    R. Li, S. H. Wang, X. X. Chen, J. Lu, Z. H. Fu, Y. Li, G. Xu, F. K. Zheng, and G. C. Guo (2017). Chem. Mater. 29, 2321.CrossRefGoogle Scholar
  17. 17.
    D. M. Chen, N. N. Zhang, C. S. Liu, and M. Du (2017). J. Mater. Chem. C 5, 2311.CrossRefGoogle Scholar
  18. 18.
    Y. F. Lai, L. Wang, and W. Y. Liu (2019). Eur. Rev. Med. Pharmacol. Sci. 23, 1797.Google Scholar
  19. 19.
    D. Chi, W. Zhang, Y. Jia, D. Cong, and S. Hu (2019). Med. Sci. Monit. Basic Res. 25, 128.CrossRefGoogle Scholar
  20. 20.
    R. Liu, Y. Chen, T. Shou, J. Hu, and C. Qing (2019). Onco. Targets Ther. 12, 2615.CrossRefGoogle Scholar
  21. 21.
    D. M. Chen, J. Y. Tian, S. M. Fang, and C. S. Liu (2016). CrystEngComm 18, 2579.CrossRefGoogle Scholar
  22. 22.
    Z. Zhang, J. Chen, Z. Bao, G. Chang, H. Xing, and Q. Ren (2015). RSC Adv. 5, 79355.CrossRefGoogle Scholar
  23. 23.
    I. H. Choi, Y. Kim, D. N. Lee, and S. Huh (2016). Polyhedron 105, 96.CrossRefGoogle Scholar
  24. 24.
    J. J. Du, X. Zhang, X. P. Zhou, and D. Li (2018). Inorg. Chem. Front. 5, 2772.CrossRefGoogle Scholar
  25. 25.
    K. T. Mahmudov, A. V. Gurbanov, F. I. Guseinov, and M. F. C. Guedes da Silva (2019). Coord. Chem. Rev. 387, 32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rong Li
    • 1
  • Yan-Na Yue
    • 1
  • Jing Sun
    • 1
  • Ye Fang
    • 2
  • Xiao-Hong Ge
    • 1
  • Li-Ping Zhang
    • 3
    Email author
  1. 1.Department of Gynaecology and ObstetricsNingbo Yinzhou No.2 HospitalNingboChina
  2. 2.Department of UltrasoundNingbo Yinzhou No.2 HospitalNingboChina
  3. 3.Department of Gynaecology and ObstetricsYanan University Affiliated HospitalYan’anChina

Personalised recommendations