Advertisement

Synthesis and Characterization of Cefditoren Capped Silver Nanoparticles and Their Antimicrobial and Catalytic Degradation of Ibuprofen

  • Muhammad Safdar
  • Ghulam Mohyyodin Qumar
  • Muthupandian Saravanan
  • Rozhgar A. Khailany
  • Mehmet Ozaslan
  • Mushtaq Ahmad Gondal
  • Karthik Deekonda
  • Qaisar Shahzad
  • Yasmeen JunejoEmail author
Original Paper
  • 8 Downloads

Abstract

While manufacturing silver nanoparticles (Ag-NPs) by green chemical rout, here we presented a naive, bottom-up and green rout for the production of Ag-NPs by successfully employed for catalytic degradation of ibuprofen drug. The Cefditoren derived silver nanoparticles were optimized by Ultra Violet–Visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and high-resolution transmission electron microscope analysis. This work has shown that a comprehensive degradation of ibuprofen of about ~ 99.9% was attained in little reaction time (60 s) by nimble Cef-Ag-NPs. The precision was achieved in percent degradation of ibuprofen by altering and adjusting the reaction period, quantity, and concentration of catalyst. The calculated rate constant (K) value for ibuprofen catalytic degradation was attained in 8 × 10−2 S−1 by plotting in concentration (C) versus time (s). The bactericidal potency of fabricated Cef-Ag-NPs was also assessed for the preferred Gram-positive Staphylococcus aureus (S. aureus) and Streptococcus pyogenes (S. pyogens) and Gram-negative Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) bacterial species. The outcomes were inveterate that common antibiotic in amalgamation with silver nanoparticles had strong and drastic antibacterial effects as compared to individually treated antibiotic and silver ions. On behalf of these consequences, it was realized that concerning Cef-Ag-NPs would serve as fast, economic, and less conventional candidates for other harmful and antibiotic-resistant pathogens.

Keywords

Green synthesis Cef-Ag-NPs Ibuprofen Catalytic activity Antibacterial efficacy Bacterial pathogens 

Abbreviations

Cef-Ag-NPs

Cefditoren derived silver nanoparticles

UV Vis

Ultra Violet–Visible spectroscopy

XRD

X-ray diffraction

FT-IR

Fourier transform infrared spectroscopy

HR-TEM

High-resolution transmission electron microscopy

S. aureus

Staphylococcus aureus

S. pyogens

Streptococcus pyogenes

E. coli

Escherichia coli

S. typhimurium

Salmonella typhimurium

NSAIDs

Nonsteroidal anti-inflammatory drugs

IBP

Ibuprofen

DCF

Diclofenac

NPX

Naproxen

Notes

Acknowledgements

The authors would like to thank Dr. Ghulam Shabir, Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan for giving us bacterial strains and the necessary facilities.

Authors’ Contribution

YJ, GMQ and MS designed and performed the experiments. MS and RAK performed the measurements. KD, YJ, MAG and QS analyzed the measurement data. MO and MS finalized the manuscript. All authors read and approved the final manuscript.

Funding

The study was supported by a departmental research Grant (No. 00129865).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.

Availability of data and materials

All data supporting the conclusions of this article are included in the article.

References

  1. 1.
    A. Khan, D. F. Shams, W. Khan, A. Ijaz, M. Qasim, M. Saad, A. Hafeez, S. A. Baig, and N. Ahmed (2018). Environ. Monit. Assess. 190, 324.CrossRefGoogle Scholar
  2. 2.
    E. Larsson, S. Al-Hamimi, and J. Å. Jönsson (2014). Sci. Total Environ. 485, 300.CrossRefGoogle Scholar
  3. 3.
    V. Yargeau, Q. A. Edwards, S. M. Kulikov, C. D. Metcalfe, T. Sultana, and L. D. Garner-O’Neale (2018). Bull. Environ. Contam. Toxicol. 101, 1.CrossRefGoogle Scholar
  4. 4.
    D. J. Kanabar (2017). Inflammopharmacology 25, 1.CrossRefGoogle Scholar
  5. 5.
    A. I. López-Lorente, R. A. Picca, J. Izquierdo, C. Kranz, B. Mizaikoff, C. Di Franco, S. Cárdenas, N. Cioffi, G. Palazzo, and A. Valentini (2018). Microchim. Acta 185, 153.CrossRefGoogle Scholar
  6. 6.
    M. A. Ansari and M. A. Alzohairy (2018). Evidence-Based Complement. Altern. Med. 2018, 1.CrossRefGoogle Scholar
  7. 7.
    M. Barbagallo and P. Sacerdote (2019). Minerva Pediatr. 71, 82.Google Scholar
  8. 8.
    Q. Sun, M. Lv, A. Hu, X. Yang, and C. P. Yu (2014). J. Hazard. Mater. 277, 69.CrossRefGoogle Scholar
  9. 9.
    C. L. Amorim, A. S. Maia, R. B. R. Mesquita, A. O. S. S. Rangel, M. C. M. van Loosdrecht, M. E. Tiritan, and P. M. L. Castro (2014). Water Res. 50, 101.CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, J. Geng, H. Ma, H. Ren, K. Xu, and L. Ding (2016). Sci. Total Environ. 571, 479.CrossRefGoogle Scholar
  11. 11.
    R. Liao, M. Li, W. Li, X. Lin, D. Liu, and L. Wang (2018). J. Mater. Sci. 53, 5929.CrossRefGoogle Scholar
  12. 12.
    W. Zhou, X. Meng, L. Rajic, Y. Xue, S. Chen, Y. Ding, K. Kou, Y. Wang, J. Gao, Y. Qin, and A. N. Alshawabkeh (2018). Electrochem. Commun. 96, 37.CrossRefGoogle Scholar
  13. 13.
    Y. Xiang, J. Fang, and C. Shang (2016). Water Res. 90, 301.CrossRefGoogle Scholar
  14. 14.
    A. Shetty and G. Gupta, in Int. Conf. Sustain. Waste Manag. Through Des. (Springer, 2018), pp. 586–595.Google Scholar
  15. 15.
    N. Jain, P. Bhosale, V. Tale, R. Henry, and J. Pawar (2019). Eurasian J. Biosci. 13, 27.Google Scholar
  16. 16.
    M. Darroudi, A. K. Zak, M. R. Muhamad, N. M. Huang, and M. Hakimi (2012). Mater. Lett. 66, 117.CrossRefGoogle Scholar
  17. 17.
    S. E. Kim, J. Hyun Park, B. Cheol Lee, J. C. Lee, and Y. Ku Kwon (2012). Radiat. Phys. Chem. 81, 978.CrossRefGoogle Scholar
  18. 18.
    K. Deekonda, S. Muniyandy, Y. Y. Lim, and P. Janarthanan (2016). Polymer 86, 147.CrossRefGoogle Scholar
  19. 19.
    B. Ajitha, Y. A. K. Reddy, and P. S. Reddy (2015). Mater. Sci. Eng. C 49, 373.CrossRefGoogle Scholar
  20. 20.
    G. D. Saratale, R. G. Saratale, G. Benelli, G. Kumar, A. Pugazhendhi, D.-S. Kim, and H.-S. Shin (2017). J. Clust. Sci. 28, 1709.CrossRefGoogle Scholar
  21. 21.
    J. M. Jacob, M. S. John, A. Jacob, P. Abitha, S. S. Kumar, R. Rajan, S. Natarajan, and A. Pugazhendhi (2018). Mater. Res. Express.  https://doi.org/10.1088/2053-1591/aafaed.Google Scholar
  22. 22.
    M. Oves, M. Aslam, M. A. Rauf, S. Qayyum, H. A. Qari, M. S. Khan, M. Z. Alam, S. Tabrez, A. Pugazhendhi, and I. M. I. Ismail (2018). Mater. Sci. Eng. C 89, 429.CrossRefGoogle Scholar
  23. 23.
    U. B. Jagtap and V. A. Bapat (2013). Ind. Crops Prod. 46, 132.CrossRefGoogle Scholar
  24. 24.
    A. Pugazhendhi, D. Prabakar, J. M. Jacob, I. Karuppusamy, and R. G. Saratale (2018). Microb. Pathog. 114, 41.CrossRefGoogle Scholar
  25. 25.
    Y. Junejo and A. Baykal (2014). Turkish J. Chem. 38, 765.CrossRefGoogle Scholar
  26. 26.
    S. Sarkar, S. Chakraborty, and C. Bhattacharjee (2015). Ecotoxicol. Environ. Saf. 121, 263.CrossRefGoogle Scholar
  27. 27.
    J. Choina, A. Bagabas, C. Fischer, G. U. Flechsig, H. Kosslick, A. Alshammari, and A. Schulz (2015). Catal. Today 241, 47.CrossRefGoogle Scholar
  28. 28.
    S. Machado, W. Stawiński, P. Slonina, A. R. Pinto, J. P. Grosso, H. P. A. Nouws, J. T. Albergaria, and C. Delerue-Matos (2013). Sci. Total Environ. 461–462, 323.CrossRefGoogle Scholar
  29. 29.
    Z. A. Tagar, N. Memon, M. H. Agheem, Y. Junejo, S. S. Hassan, N. H. Kalwar, and M. I. Khattak (2011). Sensors Actuators B Chem. 157, 430.CrossRefGoogle Scholar
  30. 30.
    Q. Muhammad (2015). J. Ind. Eng. Chem. 31, 1.CrossRefGoogle Scholar
  31. 31.
    Y. Junejo and M. Safdar (2015). Arab. J. Chem.  https://doi.org/10.1016/j.arabjc.2015.06.014.Google Scholar
  32. 32.
    E. Elaiyappillai, S. Kogularasu, S.-M. Chen, M. Akilarasan, C. E. Joshua, P. M. Johnson, M. A. Ali, F. M. A. Al-Hemaid, and M. S. Elshikh (2019). Ultrason. Sonochem. 50, 255.CrossRefGoogle Scholar
  33. 33.
    S. S. Hassan, Sirajuddin, A. R. Solangi, M. H. Agheem, Y. Junejo, N. H. Kalwar, and Z. A. Tagar (2011). J. Hazard. Mater. 190, 1030.CrossRefGoogle Scholar
  34. 34.
    Y. Junejo and A. Baykal (2013). Cent. Eur. J. Chem 11, 1527.Google Scholar
  35. 35.
    M. J. Iqbal, S. Ali, U. Rashid, M. Kamran, M. F. Malik, K. Sughra, N. Zeeshan, A. Afroz, J. Saleem, and M. Saghir (2018). Cell. Mol. Biol. (Noisy-Le-Grand) 64, 42.CrossRefGoogle Scholar
  36. 36.
    L. C. L. de Abreu, V. Todaro, P. C. Sathler, L. C. R. P. da Silva, F. A. do Carmo, C. M. Costa, H. K. Toma, H. C. Castro, C. R. Rodrigues, V. P. de Sousa, and L. M. Cabral (2016). AAPS PharmSciTech. 17, 1421.Google Scholar
  37. 37.
    G. Access, I. Sondi, and B. Salopek-sondi (2004). J. Colloid Interface Sci. 275, 177.CrossRefGoogle Scholar
  38. 38.
    K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh (2010). Nanomed. Nanotechnol. Biol. Med. 6, 257.CrossRefGoogle Scholar
  39. 39.
    S. K. R. Namasivayam, S. Ganesh, and Avimanyu (2011). Int J Med Res. 1, 130.Google Scholar
  40. 40.
    M. Zarei, A. Jamnejad, and E. Khajehali, Jundishapur (2014). J. Microbiol.  https://doi.org/10.5812/jjm.8720.Google Scholar
  41. 41.
    B. Sadeghi, M. Jamali, S. Kia, and S. Ghafari (2010). Int. J. Nano Dimens. 1, 119.Google Scholar
  42. 42.
    D. Parial, H. K. Patra, A. K. Dasgupta, and R. Pal (2012). Eur. J. Phycol. 47, 22.CrossRefGoogle Scholar
  43. 43.
    T. Leisner, A. Panas, A. Comouth, H. Saathoff, T. Leisner, M. Al-rawi, M. Simon, G. Seemann, O. Dössel, S. Mülhopt, H. Paur, S. Fritsch-decker, C. Weiss, and S. Diabaté (2016). Beilstein J. Nanotechnol. 5, 1590.Google Scholar
  44. 44.
    B. Reidy, A. Haase, A. Luch, K. A. Dawson, and I. Lynch (2013). Materials (Basel) 6, 2295.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Muhammad Safdar
    • 1
    • 5
  • Ghulam Mohyyodin Qumar
    • 2
  • Muthupandian Saravanan
    • 3
  • Rozhgar A. Khailany
    • 4
  • Mehmet Ozaslan
    • 5
  • Mushtaq Ahmad Gondal
    • 6
  • Karthik Deekonda
    • 7
  • Qaisar Shahzad
    • 8
  • Yasmeen Junejo
    • 9
    Email author
  1. 1.Department of Breeding and Genetics, Faculty of Animal Production and TechnologyCholistan University of Veterinary and Animal SciencesBahawalpurPakistan
  2. 2.Department of BiotechnologyVirtual University of PakistanLahorePakistan
  3. 3.Department of Medical Microbiology and Immunology, School of Medicine, College of Health ScienceMekelle UniversityMekelleEthiopia
  4. 4.Department of Biology, College of ScienceUniversity of SalahaddinErbīlIraq
  5. 5.Department of Biology, Division of Molecular Biology and GeneticsGaziantep UniversityGaziantepTurkey
  6. 6.Institute of Continuing Education and ExtensionCholistan University of Veterinary and Animal SciencesBahawalpurPakistan
  7. 7.School of ScienceMonash UniversitySubang JayaMalaysia
  8. 8.Animal Reproductive Biotechnology LaboratoryGuangxi UniversityNanningChina
  9. 9.Department of BiologyVirtual University of PakistanMultanPakistan

Personalised recommendations