Evaluation of Larvicidal and Repellent Activity of Nanocrystal Emulsion Synthesized from F. glomerata and Neem Oil Against Mosquitoes

  • Abdul Azeez Nazeer
  • Haryanth Vaman Rajan
  • Sudarshana Deepa VijaykumarEmail author
  • Muthupandian Saravanan
Original Paper


Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi are the domestic vectors of tropical diseases include dengue, malaria, zika, filariasis. To control these vectors, ethnobotanical knowledge provides pragmatic solutions that are compatible with nature. Hence an attempt has been made to coalesce the ethnobotanical knowledge of tribes from Kadambur hills with the nano emulsification technology to formulate an herbal-based larvicidal and repellent nanocrystal emulsion. The ethanol extract from Ficus glomerata was used as the larvicidal and repellant agent against A. aegypti, C. quinquefasciatus and A. stephensi. For the improved stability, shelf life and sustained release of bioactive compounds, a novel methodology has been followed to synthesize nanocrystal emulsion. F. glomerata extract based nanocrystal emulsion (FON) was prepared by ultrasonication and characterized by Zeta potential (− 73.6 mV) and dynamic light scattering (104 nm), ATR-FTIR for the functional groups, high-resolution transmission electron microscope and selective area energy diffraction. The maximum shelf life was evaluated to be more than 3 years. The prepared nanocrystal emulsion was challenged for larvicidal and repellent activities against all the three species. The FON larvicidal results were comparable to the conventional neem oil based nanoemulsion and the repellant activity results were effective than the commercial formulation.


Nanocrystal Nanoemulsion Ficus glomerata Bioactive compound Repellant activity Larvicidal activity Mosquito 



Selected area energy diffraction


Hydrophilic lipophilic balance




Phenol 2,4-bis (1,1-dimethylethyl)-




Neem oil based nanocrystal emulsions


Ficus glomerata extract based nanocrystal emulsions


Odorant receptor



The authors are grateful to the Department of Science and Technology—Science and Engineering Research Board (DST-SERB—File No. YSS/2014/000637) for funding our project. Authors are thankful to The South Indian Textile Research Association (SITRA), Coimbatore, India for their help in GC–MS instrumentation, Vector Control Research Centre (VCRC), Madurai, India for kindly providing us the mosquito larvae and Sophisticated Test & Instrumentation Centre (STIC), Cochin, India for the help in HR-TEM instrumentation.

Author Contributions

All authors have contributed to the work and writing of the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Competing interests

The authors declare that they have no competing interests.


  1. 1.
    G. Benelli, C. L. Jeffries, and T. Walker (2016). Insects 7, 52. Scholar
  2. 2.
    A. G. Hoi and B. D. Roitberg (2014). Evol. Med. Public Heal. 2014, 162. Scholar
  3. 3.
    K. Healy, G. Hamilton, T. Crepeau, S. Healy, I. Unlu, A. Farajollahi, and D. M. Fonseca (2014). PLoS One 9, e108504. Scholar
  4. 4.
    F. Baldacchino, B. Caputo, F. Chandre, A. Drago, A. della Torre, F. Montarsi, et al. (2015). Pest Manag. Sci. 71, 1471–1485. Scholar
  5. 5.
    J. A. Mahyoub, A. S. Alsobhi, K. Al-Ghamdi, N. A. Khatter, A. T. Aziz, S. A. Al-Shami, et al. (2016). Asian Pac. J. Trop. Dis. 6, 361–365. Scholar
  6. 6.
    S. Marcombe, F. Darriet, P. Agnew, M. Etienne, M.-M. Yp-Tcha, A. Yébakima, et al. (2011). Am. J. Trop. Med. Hyg. 84, 118–126. Scholar
  7. 7.
    R. Pavela and G. Benelli (2016). Exp. Parasitol. 167, 103–108. Scholar
  8. 8.
    C. L. Cantrell, A. M. P. Jones, and A. Ali (2016). J. Agric. Food Chem. 64, 8352–8358. Scholar
  9. 9.
    A. V. Coria-Téllez, E. Montalvo-Gónzalez, E. M. Yahia, and E. N. Obledo-Vázquez (2018). Arab. J. Chem. 11, 662–691. Scholar
  10. 10.
    L. A. Kanis, B. D. Rabelo, D. Moterle, K. M. Custódio, J. G. de Oliveira, A. B. de Lemos, et al. (2018). Ind. Crops Prod. 122, 148–155. Scholar
  11. 11.
    R. Pavela (2015). Ind. Crops Prod. 76, 174–187. Scholar
  12. 12.
    A. Ghosh, N. Chowdhury, and G. Chandra (2012). Indian J. Med. Res. 135, 581–598.Google Scholar
  13. 13.
    U. Sakulku, O. Nuchuchua, N. Uawongyart, S. Puttipipatkhachorn, A. Soottitantawat, and U. Ruktanonchai (2009). Int. J. Pharm. 372, 105–111.CrossRefGoogle Scholar
  14. 14.
    R. Tisgratog, U. Sanguanpong, J. P. Grieco, R. Ngoen-Kluan, and T. Chareonviriyaphap (2016). Acta Trop. 157, 136–144. Scholar
  15. 15.
    B. Mathalaimuthu, D. Shanmugam, K. Kovendan, M. Kadarkarai, G. Jayapal, and G. Benelli (2017). Process Saf. Environ. Prot. 106, 23–33. Scholar
  16. 16.
    M. A. Ansari, P. Vasudevan, M. Tandon, and R. K. Razdan (2000). Bioresour. Technol. 71, 267–271. Scholar
  17. 17.
    M. Govindarajan, M. Rajeswary, S. Arivoli, S. Tennyson, and G. Benelli (2016). Parasitol. Res. 115, 1807–1816. Scholar
  18. 18.
    R. A. Sabroe, C. R. Holden, and D. J. Gawkrodger (2016). Contact Dermat. 74, 236–241. Scholar
  19. 19.
    L. Hagvall and J. B. Christensson (2016). Acta Derm. Venereol. 96, (5), 679–683. Scholar
  20. 20.
    M. Osanloo, H. Sereshti, M. M. Sedaghat, and A. Amani (2018). Environ. Sci. Pollut. Res. Int. 25, 6466–6473. Scholar
  21. 21.
    C. V. Rao, A. R. Verma, M. Vijayakumar, and S. Rastogi (2008). J. Ethnopharmacol. 115, 323–326. Scholar
  22. 22.
    S. P. Kalpana, P. D. Warke, and S. C. Chaturvedi (2006). J. Nat. Remedies 6, 120–123. Scholar
  23. 23.
    M. G. Hogade, B. N. Poul, S. S. Kuthar, C. V. Panchal, and J. C. Hugar (2015). Indian Drugs 58, 9–11.Google Scholar
  24. 24.
    I. Yusufuddin, A. Khan Mohd, and H. Shivakumar (2011). Free Radic. Antioxid. 1, 69–74. Scholar
  25. 25.
    R. S. B. Eshwarappa, S. Iyer, S. R. Subaramaihha, S. A. Richard, and B. L. Dhananjaya (2015). Pharmacogn. Res. 7, 114–120. Scholar
  26. 26.
    R. A. K. Rao and F. Rehman (2010). J. Hazard. Mater. 181, 405–412. Scholar
  27. 27.
    K. Priyanka, P. L. Sahu, and S. Singh (2018). J. Drug Deliv. Sci. Technol. 43, 94–102. Scholar
  28. 28.
    W.H.O. Guidelines for Laboratory and Field Testing of Mosquito Larvicides (World Health Organization, Geneva, 2005).Google Scholar
  29. 29.
    Y. L. Kee, S. Mukherjee, and A. Pariatamby (2015). Chemosphere 136, 111–117. Scholar
  30. 30.
    A. R. Padmavathi, B. Abinaya, and S. K. Pandian (2014). Biofouling 30, 1111–1122. Scholar
  31. 31.
    G. Rangel-Sánchez, E. Castro-Mercado, and E. García-Pineda (2014). J. Plant Physiol. 171, 189–198. Scholar
  32. 32.
    R. C. María Teresa, V. G. Rosaura, C. M. Elda, and G. P. Ernesto (2014). Physiol. Mol. Plant Pathol. 87, 32–41. Scholar
  33. 33.
    A. Ray (2015). Curr. Opin. Neurobiol. 34, 158–164. Scholar
  34. 34.
    D. J. McClements (2013). Ther. Deliv. 4, 841–857. Scholar
  35. 35.
    N. Panayotatos and C. L. Villemez (1973). Biochem. J. 133, 263–271.CrossRefGoogle Scholar
  36. 36.
    J. A. Manthey and K. Grohmann (2001). J. Agric. Food Chem. 49, 3268–3273.CrossRefGoogle Scholar
  37. 37.
    V. Bali, M. Ali, and J. Ali (2010). Colloids Surf. B. Biointerfaces 76, 410–420.CrossRefGoogle Scholar
  38. 38.
    A. A. Nazeer, S. D. Vijaykumar, and M. Saravanan (2019). J. Clust. Sci. Scholar
  39. 39.
    A. E. Silva, G. Barratt, M. Cheron, and E. S. T. Egito (2013). Int. J. Pharm. 454, 641–648. Scholar
  40. 40.
    T. R. Poorani, V. Vellingiria, V. S. Deepa, and A. N. Abdul (2017). Int. J. Pharm. Sci. Res. 8, 4159–4171.Google Scholar
  41. 41.
    S. Kumari, R. V. Kumaraswamy, R. C. Choudhary, S. S. Sharma, A. Pal, R. Raliya, et al. (2018). Sci. Rep. 8, 6650. Scholar
  42. 42.
    E. Brianda, P. David, and O. F. Sayo (2016). Food Control. 68, 303–309.CrossRefGoogle Scholar
  43. 43.
    H. N. Murthy, K. S. Joseph, S. Payamalle, D. Dalawai, and V. Ganapumane (2017). J. Parasit. Dis. 41, 666–670. Scholar
  44. 44.
    P. Mishra, M. K. Samuel, R. Reddy, B. K. Tyagi, A. Mukherjee, and N. Chandrasekaran (2018). Environ. Sci. Pollut. Res. 25, 2211–2230. Scholar
  45. 45.
    K. R. Amaninder and K. Devinder (2017). Turk. J. Zool. 41, 763–773. Scholar
  46. 46.
    S. Sugumar, S. K. Clarke, M. J. Nirmala, B. K. Tyagi, and A. Mukherjee (2014). Bull. Entomol. Res. 104, 393–402. Scholar
  47. 47.
    W. Jiraungkoorskul (2015). Walailak J. Sci Tech. 13, (2), 133–140. Scholar
  48. 48.
    M. Ditzen, M. Pellegrino, and L. B. Vosshall (2008). Science 319, 1838–1842. Scholar
  49. 49.
    Y. Xia, G. Wang, D. Buscariollo, R. J. Pitts, H. Wenger, and L. J. Zwiebel (2008). Proc. Natl. Acad. Sci. 105, 6433–6438. Scholar
  50. 50.
    P. Rabea, B. Sanjula, A. Javed, A. Alka, and A. Sayeed (2015). J. Pharm. Bioallied Sci. 7, (4), 321–324. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nano-Bio Translational Research Laboratory, Department of BiotechnologyBannari Amman Institute of TechnologySathyamangalam, ErodeIndia
  2. 2.Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health SciencesMekelle UniversityMekelleEthiopia

Personalised recommendations