Advertisement

Evaluation of Larvicidal and Repellent Activity of Nanocrystal Emulsion Synthesized from F. glomerata and Neem Oil Against Mosquitoes

  • Abdul Azeez Nazeer
  • Haryanth Vaman Rajan
  • Sudarshana Deepa VijaykumarEmail author
  • Muthupandian Saravanan
Original Paper
  • 5 Downloads

Abstract

Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi are the domestic vectors of tropical diseases include dengue, malaria, zika, filariasis. To control these vectors, ethnobotanical knowledge provides pragmatic solutions that are compatible with nature. Hence an attempt has been made to coalesce the ethnobotanical knowledge of tribes from Kadambur hills with the nano emulsification technology to formulate an herbal-based larvicidal and repellent nanocrystal emulsion. The ethanol extract from Ficus glomerata was used as the larvicidal and repellant agent against A. aegypti, C. quinquefasciatus and A. stephensi. For the improved stability, shelf life and sustained release of bioactive compounds, a novel methodology has been followed to synthesize nanocrystal emulsion. F. glomerata extract based nanocrystal emulsion (FON) was prepared by ultrasonication and characterized by Zeta potential (− 73.6 mV) and dynamic light scattering (104 nm), ATR-FTIR for the functional groups, high-resolution transmission electron microscope and selective area energy diffraction. The maximum shelf life was evaluated to be more than 3 years. The prepared nanocrystal emulsion was challenged for larvicidal and repellent activities against all the three species. The FON larvicidal results were comparable to the conventional neem oil based nanoemulsion and the repellant activity results were effective than the commercial formulation.

Keywords

Nanocrystal Nanoemulsion Ficus glomerata Bioactive compound Repellant activity Larvicidal activity Mosquito 

Abbreviations

SAED

Selected area energy diffraction

HLB

Hydrophilic lipophilic balance

DG

d-Galactose

PD

Phenol 2,4-bis (1,1-dimethylethyl)-

FL

Flavone

NON

Neem oil based nanocrystal emulsions

FON

Ficus glomerata extract based nanocrystal emulsions

OR

Odorant receptor

Notes

Acknowledgements

The authors are grateful to the Department of Science and Technology—Science and Engineering Research Board (DST-SERB—File No. YSS/2014/000637) for funding our project. Authors are thankful to The South Indian Textile Research Association (SITRA), Coimbatore, India for their help in GC–MS instrumentation, Vector Control Research Centre (VCRC), Madurai, India for kindly providing us the mosquito larvae and Sophisticated Test & Instrumentation Centre (STIC), Cochin, India for the help in HR-TEM instrumentation.

Author Contributions

All authors have contributed to the work and writing of the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    G. Benelli, C. L. Jeffries, and T. Walker (2016). Insects 7, 52.  https://doi.org/10.3390/insects7040052.CrossRefGoogle Scholar
  2. 2.
    A. G. Hoi and B. D. Roitberg (2014). Evol. Med. Public Heal. 2014, 162.  https://doi.org/10.1093/emph/eou030.CrossRefGoogle Scholar
  3. 3.
    K. Healy, G. Hamilton, T. Crepeau, S. Healy, I. Unlu, A. Farajollahi, and D. M. Fonseca (2014). PLoS One 9, e108504.  https://doi.org/10.1371/journal.pone.0108504.CrossRefGoogle Scholar
  4. 4.
    F. Baldacchino, B. Caputo, F. Chandre, A. Drago, A. della Torre, F. Montarsi, et al. (2015). Pest Manag. Sci. 71, 1471–1485.  https://doi.org/10.1002/ps.4044.CrossRefGoogle Scholar
  5. 5.
    J. A. Mahyoub, A. S. Alsobhi, K. Al-Ghamdi, N. A. Khatter, A. T. Aziz, S. A. Al-Shami, et al. (2016). Asian Pac. J. Trop. Dis. 6, 361–365.  https://doi.org/10.1016/S2222-1808(15)61048-9.CrossRefGoogle Scholar
  6. 6.
    S. Marcombe, F. Darriet, P. Agnew, M. Etienne, M.-M. Yp-Tcha, A. Yébakima, et al. (2011). Am. J. Trop. Med. Hyg. 84, 118–126.  https://doi.org/10.4269/ajtmh.2011.10-0335.CrossRefGoogle Scholar
  7. 7.
    R. Pavela and G. Benelli (2016). Exp. Parasitol. 167, 103–108.  https://doi.org/10.1016/j.exppara.2016.05.010.CrossRefGoogle Scholar
  8. 8.
    C. L. Cantrell, A. M. P. Jones, and A. Ali (2016). J. Agric. Food Chem. 64, 8352–8358.  https://doi.org/10.1021/acs.jafc.6b01668.CrossRefGoogle Scholar
  9. 9.
    A. V. Coria-Téllez, E. Montalvo-Gónzalez, E. M. Yahia, and E. N. Obledo-Vázquez (2018). Arab. J. Chem. 11, 662–691.  https://doi.org/10.1016/j.arabjc.2016.01.004.CrossRefGoogle Scholar
  10. 10.
    L. A. Kanis, B. D. Rabelo, D. Moterle, K. M. Custódio, J. G. de Oliveira, A. B. de Lemos, et al. (2018). Ind. Crops Prod. 122, 148–155.  https://doi.org/10.1016/j.indcrop.2018.05.055.CrossRefGoogle Scholar
  11. 11.
    R. Pavela (2015). Ind. Crops Prod. 76, 174–187.  https://doi.org/10.1016/j.indcrop.2015.06.050.CrossRefGoogle Scholar
  12. 12.
    A. Ghosh, N. Chowdhury, and G. Chandra (2012). Indian J. Med. Res. 135, 581–598.Google Scholar
  13. 13.
    U. Sakulku, O. Nuchuchua, N. Uawongyart, S. Puttipipatkhachorn, A. Soottitantawat, and U. Ruktanonchai (2009). Int. J. Pharm. 372, 105–111.CrossRefGoogle Scholar
  14. 14.
    R. Tisgratog, U. Sanguanpong, J. P. Grieco, R. Ngoen-Kluan, and T. Chareonviriyaphap (2016). Acta Trop. 157, 136–144.  https://doi.org/10.1016/j.actatropica.2016.01.024.CrossRefGoogle Scholar
  15. 15.
    B. Mathalaimuthu, D. Shanmugam, K. Kovendan, M. Kadarkarai, G. Jayapal, and G. Benelli (2017). Process Saf. Environ. Prot. 106, 23–33.  https://doi.org/10.1016/j.psep.2016.12.003.CrossRefGoogle Scholar
  16. 16.
    M. A. Ansari, P. Vasudevan, M. Tandon, and R. K. Razdan (2000). Bioresour. Technol. 71, 267–271.  https://doi.org/10.1016/S0960-8524(99)00079-6.CrossRefGoogle Scholar
  17. 17.
    M. Govindarajan, M. Rajeswary, S. Arivoli, S. Tennyson, and G. Benelli (2016). Parasitol. Res. 115, 1807–1816.  https://doi.org/10.1007/s00436-016-4920-x.CrossRefGoogle Scholar
  18. 18.
    R. A. Sabroe, C. R. Holden, and D. J. Gawkrodger (2016). Contact Dermat. 74, 236–241.  https://doi.org/10.1111/cod.12528.CrossRefGoogle Scholar
  19. 19.
    L. Hagvall and J. B. Christensson (2016). Acta Derm. Venereol. 96, (5), 679–683.  https://doi.org/10.2340/00015555-2319.CrossRefGoogle Scholar
  20. 20.
    M. Osanloo, H. Sereshti, M. M. Sedaghat, and A. Amani (2018). Environ. Sci. Pollut. Res. Int. 25, 6466–6473.  https://doi.org/10.1007/s11356-017-0822-4.CrossRefGoogle Scholar
  21. 21.
    C. V. Rao, A. R. Verma, M. Vijayakumar, and S. Rastogi (2008). J. Ethnopharmacol. 115, 323–326.  https://doi.org/10.1016/j.jep.2007.09.019.CrossRefGoogle Scholar
  22. 22.
    S. P. Kalpana, P. D. Warke, and S. C. Chaturvedi (2006). J. Nat. Remedies 6, 120–123.  https://doi.org/10.18311/jnr/2006/453.Google Scholar
  23. 23.
    M. G. Hogade, B. N. Poul, S. S. Kuthar, C. V. Panchal, and J. C. Hugar (2015). Indian Drugs 58, 9–11.Google Scholar
  24. 24.
    I. Yusufuddin, A. Khan Mohd, and H. Shivakumar (2011). Free Radic. Antioxid. 1, 69–74.  https://doi.org/10.5530/ax.2011.4.11.CrossRefGoogle Scholar
  25. 25.
    R. S. B. Eshwarappa, S. Iyer, S. R. Subaramaihha, S. A. Richard, and B. L. Dhananjaya (2015). Pharmacogn. Res. 7, 114–120.  https://doi.org/10.4103/0974-8490.147225.CrossRefGoogle Scholar
  26. 26.
    R. A. K. Rao and F. Rehman (2010). J. Hazard. Mater. 181, 405–412.  https://doi.org/10.1016/j.jhazmat.2010.05.025.CrossRefGoogle Scholar
  27. 27.
    K. Priyanka, P. L. Sahu, and S. Singh (2018). J. Drug Deliv. Sci. Technol. 43, 94–102.  https://doi.org/10.1016/j.jddst.2017.08.006.CrossRefGoogle Scholar
  28. 28.
    W.H.O. Guidelines for Laboratory and Field Testing of Mosquito Larvicides (World Health Organization, Geneva, 2005).Google Scholar
  29. 29.
    Y. L. Kee, S. Mukherjee, and A. Pariatamby (2015). Chemosphere 136, 111–117.  https://doi.org/10.1016/j.chemosphere.2015.04.074.CrossRefGoogle Scholar
  30. 30.
    A. R. Padmavathi, B. Abinaya, and S. K. Pandian (2014). Biofouling 30, 1111–1122.  https://doi.org/10.1080/08927014.2014.972386.CrossRefGoogle Scholar
  31. 31.
    G. Rangel-Sánchez, E. Castro-Mercado, and E. García-Pineda (2014). J. Plant Physiol. 171, 189–198.  https://doi.org/10.1016/j.jplph.2013.07.004.CrossRefGoogle Scholar
  32. 32.
    R. C. María Teresa, V. G. Rosaura, C. M. Elda, and G. P. Ernesto (2014). Physiol. Mol. Plant Pathol. 87, 32–41.  https://doi.org/10.1016/j.pmpp.2014.05.003.CrossRefGoogle Scholar
  33. 33.
    A. Ray (2015). Curr. Opin. Neurobiol. 34, 158–164.  https://doi.org/10.1016/j.conb.2015.06.014.CrossRefGoogle Scholar
  34. 34.
    D. J. McClements (2013). Ther. Deliv. 4, 841–857.  https://doi.org/10.4155/tde.13.46.CrossRefGoogle Scholar
  35. 35.
    N. Panayotatos and C. L. Villemez (1973). Biochem. J. 133, 263–271.CrossRefGoogle Scholar
  36. 36.
    J. A. Manthey and K. Grohmann (2001). J. Agric. Food Chem. 49, 3268–3273.CrossRefGoogle Scholar
  37. 37.
    V. Bali, M. Ali, and J. Ali (2010). Colloids Surf. B. Biointerfaces 76, 410–420.CrossRefGoogle Scholar
  38. 38.
    A. A. Nazeer, S. D. Vijaykumar, and M. Saravanan (2019). J. Clust. Sci.  https://doi.org/10.1007/s10876-019-01543-6.Google Scholar
  39. 39.
    A. E. Silva, G. Barratt, M. Cheron, and E. S. T. Egito (2013). Int. J. Pharm. 454, 641–648.  https://doi.org/10.1016/j.ijpharm.2013.05.044.CrossRefGoogle Scholar
  40. 40.
    T. R. Poorani, V. Vellingiria, V. S. Deepa, and A. N. Abdul (2017). Int. J. Pharm. Sci. Res. 8, 4159–4171.Google Scholar
  41. 41.
    S. Kumari, R. V. Kumaraswamy, R. C. Choudhary, S. S. Sharma, A. Pal, R. Raliya, et al. (2018). Sci. Rep. 8, 6650.  https://doi.org/10.1038/s41598-018-24871-5.CrossRefGoogle Scholar
  42. 42.
    E. Brianda, P. David, and O. F. Sayo (2016). Food Control. 68, 303–309.CrossRefGoogle Scholar
  43. 43.
    H. N. Murthy, K. S. Joseph, S. Payamalle, D. Dalawai, and V. Ganapumane (2017). J. Parasit. Dis. 41, 666–670.  https://doi.org/10.1007/s12639-016-0863-5.CrossRefGoogle Scholar
  44. 44.
    P. Mishra, M. K. Samuel, R. Reddy, B. K. Tyagi, A. Mukherjee, and N. Chandrasekaran (2018). Environ. Sci. Pollut. Res. 25, 2211–2230.  https://doi.org/10.1007/s11356-017-0591-0.CrossRefGoogle Scholar
  45. 45.
    K. R. Amaninder and K. Devinder (2017). Turk. J. Zool. 41, 763–773.  https://doi.org/10.3906/zoo-1701-4.CrossRefGoogle Scholar
  46. 46.
    S. Sugumar, S. K. Clarke, M. J. Nirmala, B. K. Tyagi, and A. Mukherjee (2014). Bull. Entomol. Res. 104, 393–402.  https://doi.org/10.1017/S0007485313000710.CrossRefGoogle Scholar
  47. 47.
    W. Jiraungkoorskul (2015). Walailak J. Sci Tech. 13, (2), 133–140.  https://doi.org/10.14456/wjst.2016.14.Google Scholar
  48. 48.
    M. Ditzen, M. Pellegrino, and L. B. Vosshall (2008). Science 319, 1838–1842.  https://doi.org/10.1126/science.1153121).CrossRefGoogle Scholar
  49. 49.
    Y. Xia, G. Wang, D. Buscariollo, R. J. Pitts, H. Wenger, and L. J. Zwiebel (2008). Proc. Natl. Acad. Sci. 105, 6433–6438.  https://doi.org/10.1073/pnas.0801007105.CrossRefGoogle Scholar
  50. 50.
    P. Rabea, B. Sanjula, A. Javed, A. Alka, and A. Sayeed (2015). J. Pharm. Bioallied Sci. 7, (4), 321–324.  https://doi.org/10.4103/0975-7406.168037.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nano-Bio Translational Research Laboratory, Department of BiotechnologyBannari Amman Institute of TechnologySathyamangalam, ErodeIndia
  2. 2.Department of Medical Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health SciencesMekelle UniversityMekelleEthiopia

Personalised recommendations