Journal of Cluster Science

, Volume 30, Issue 6, pp 1641–1647 | Cite as

The Role of Cu in Adsorption of O2 and CO Molecules on the Pt12Cu Cluster

  • Guoqing Wang
  • Xueling LeiEmail author
Original Paper


Using density functional theory method, we have studied O2 and CO molecules adsorption on the Pt13 and Pt12Cu clusters, respectively. Analysis of the adsorption energies, O–O bond length, and natural bond orbital (NBO) charge indicates that the copper doping plays an important role in the enhanced reduction of O2 molecule in low temperature fuel cells (LTFCs). On the other hand, contrary to the adsorption of O2 molecule, the calculated adsorption energies, NBO charge and molecular orbitals show that the copper doping significantly weakens the adsorption of the CO molecule, indicating that the Cu-doped Pt catalyst is resistant to CO poisoning in the LTFCs. Our studies provide an important clue to understand the catalytic mechanism of platinum copper alloy catalysts in the LTFCs.


Platinum copper alloy catalysts Oxygen reduction reaction CO poisoning Low temperature fuel cells Density functional theory 



The authors thank the National Natural Science Foundation of China (Grant Nos. 11404149, 11764019) for financial support of the current work.


  1. 1.
    Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher (2011). Appl. Energy 88, 981.CrossRefGoogle Scholar
  2. 2.
    X. Zhao, M. Yin, M. Liang, L. Liang, C. Liu, J. Liao, T. Lu, and X. Wei (2011). Energy Environ. Sci. 4, 2736.CrossRefGoogle Scholar
  3. 3.
    C. Koenigsmann and S. S. Wong (2011). Energy Environ. Sci. 4, 1161.CrossRefGoogle Scholar
  4. 4.
    Q. Jiang, L. Jiang, H. Hou, J. Qi, S. Wang, and G. Sun (2010). J. Phys. Chem. C 114, 19714.CrossRefGoogle Scholar
  5. 5.
    M. Gong, G. Fu, Y. Chen, Y. Tang, and T. Lu (2014). Acs Appl. Mater. Inter. 6, 7301.CrossRefGoogle Scholar
  6. 6.
    C. Li, M. Imura, and Y. Yamauchi (2014). Chem. Eur. J 20, 3277.CrossRefGoogle Scholar
  7. 7.
    K. Eid, Y. H. Ahmad, S. Y. Alqaradawi, and N. K. Allam (2017). Catal. Sci. Technol. 7, 2819.CrossRefGoogle Scholar
  8. 8.
    Z. Yu, J. Zhang, Z. Liu, J. M. Ziegelbauer, H. Xin, I. Dutta, D. A. Muller, and F. T. Wagner (2012). J. Phys. Chem. C 116, 19877.CrossRefGoogle Scholar
  9. 9.
    R. Mu, Q. Fu, H. Xu, H. Zhang, Y. Huang, Z. Jiang, S. Zhang, D. Tan, and X. Bao (2011). J. Am. Chem. Soc. 133, 1978.CrossRefGoogle Scholar
  10. 10.
    H. Yang, L. Dai, D. Xu, J. Fang, and S. Zou (2010). Electrochim. Acta 55, 8000.CrossRefGoogle Scholar
  11. 11.
    H. Yang, J. Zhang, K. Sun, S. Zou, and J. Fang (2010). Angew. Chem. Int. Ed Engl. 49, 6848.CrossRefGoogle Scholar
  12. 12.
    D. Y. Chung, S. W. Jun, G. Yoon, S. G. Kwon, D. Y. Shin, P. Seo, J. M. Yoo, H. Shin, Y. H. Chung, and H. Kim (2015). J. Am. Chem. Soc. 137, 15478.CrossRefGoogle Scholar
  13. 13.
    H. Zhang, M. Jin, and Y. Xia (2012). Cheminform 41, 8035.Google Scholar
  14. 14.
    A. X. Yin, X. Q. Min, W. Zhu, W. C. Liu, Y. W. Zhang, and C. H. Yan (2012). Chem. - Eur. J 18, 777.CrossRefGoogle Scholar
  15. 15.
    A. B. Callahan (2008). Phys. Chem. Chem. Phys. 10, 6052.CrossRefGoogle Scholar
  16. 16.
    Z. Xu, H. Zhang, S. Liu, B. Zhang, H. Zhong, and D. S. Su (2012). Int. J. Hydrog. Energy. 37, 17978.CrossRefGoogle Scholar
  17. 17.
    X. Ge, L. Chen, J. Kang, T. Fujita, A. Hirata, W. Zhang, J. Jiang, and M. Chen (2013). Adv. Funct. Mater. 23, 4156.CrossRefGoogle Scholar
  18. 18.
    D. Xu, Z. Liu, H. Yang, Q. Liu, J. Zhang, J. Fang, S. Zou, and K. Sun (2009). Angew. Chem., Int. Ed. 48, 4217.Google Scholar
  19. 19.
    D. Xu, S. Bliznakov, Z. Liu, J. Fang, and N. Dimitrov (2010). Angew. Chem. 49, 1282.CrossRefGoogle Scholar
  20. 20.
    B. Y. Xia, H. B. Wu, X. Wang, and X. W. Lou (2012). J. Am. Chem. Soc. 134, 13934.CrossRefGoogle Scholar
  21. 21.
    X. Yu, D. Wang, Q. Peng, and Y. Li (2011). Chem. Commun. 47, 8094.CrossRefGoogle Scholar
  22. 22.
    A. S. Chaves, M. J. Piotrowski, D. G. Sobrinho, and S. J. Da (2015). J. Phys. Chem. A 119, 11565.CrossRefGoogle Scholar
  23. 23.
    D. G. Sobrinho, R. K. Nomiyama, A. S. Chaves, M. J. Piotrowski, and J. L. F. D. Silva (2015). J. Phys. Chem. C 119, 15669.CrossRefGoogle Scholar
  24. 24.
    J. Mejía-López, G. García, and A. H. Romero (2009). J. Chem. Phys. 131, 31.CrossRefGoogle Scholar
  25. 25.
    A. S. Chaves, G. G. Rondina, M. J. Piotrowski, and J. L. F. D. Silva (2015). Comput. Mater. Sci. 98, 278.CrossRefGoogle Scholar
  26. 26.
    H. Mu, B. Xu, C. Ouyang, and X. Lei (2016). J. Alloy. Compd. 696, 470.CrossRefGoogle Scholar
  27. 27.
    X. L. Lei, M. Wu, G. Liu, B. Xu, and C. Ouyang (2013). J. Phys. Chem. A 117, 8293.CrossRefGoogle Scholar
  28. 28.
    X. Lei, H. Mu, S. Li, G. Liu, B. Xu, and C. Ouyang (2018). J. Alloy. Compd. 741, 604.CrossRefGoogle Scholar
  29. 29.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, (2013). Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT.Google Scholar
  30. 30.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  31. 31.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.CrossRefGoogle Scholar
  32. 32.
    P. J. Hay (1985). J. Chem. Phys. 82, 299.CrossRefGoogle Scholar
  33. 33.
    P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270.CrossRefGoogle Scholar
  34. 34.
    V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus (1998). J. Chem. Phys. 109, 1223.CrossRefGoogle Scholar
  35. 35.
    P. C. Hariharan and J. A. Pople (1973). Theor. Chim. Acta 28, 213.CrossRefGoogle Scholar
  36. 36.
    M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees, and J. A. Pople (1982). J. Chem. Phys. 77, 3654.CrossRefGoogle Scholar
  37. 37.
    J. Zhang and M. Dolg (2016). Phys. Chem. Chem. Phys. 18, 3003.CrossRefGoogle Scholar
  38. 38.
    J. Zhang and M. Dolg (2015). Phys. Chem. Chem. Phys. 17, 24173.CrossRefGoogle Scholar
  39. 39.
    F. Zhao, C. Liu, P. Wang, S. Huang, and H. Tian (2013). J. Alloy. Compd. 577, 669.CrossRefGoogle Scholar
  40. 40.
    G. Shafai, S. Hong, T. Rahman, and M. Bertino (2008), APS March Meeting.Google Scholar
  41. 41.
    K. Fukui (1952). J. Chem. Phys. 20, 1653.CrossRefGoogle Scholar
  42. 42.
    K. Fukui, T. Yonezawa, C. Nagata, and H. Shingu (1954). J. Chem. Phys. 22, 1433.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Laboratory of Computational Materials PhysicsJiangxi Normal UniversityNanchangChina

Personalised recommendations