Advertisement

Journal of Cluster Science

, Volume 30, Issue 6, pp 1611–1621 | Cite as

Size Controlled Green Synthesis of Biocompatible Silver Nanoparticles with Enhanced Mosquito Larvicidal Activity

  • Shabad PreetEmail author
  • Neh Satsangi
Original Paper

Abstract

The present study focuses on rapid and green synthesis of silver nanoparticles (AgNPs) by using aqueous extract of Indian spice Asafoetida. To study the enhanced reducing and capping activity of Agave americana, four different combinations were employed, where a fixed volume of Asafoetida aqueous solution was mixed with different proportions of 1 mM aqueous silver nitrate solution and A. americana extract. Formation of AgNPs was signified through color change from colorless to dark brown and confirmed using UV–Vis spectral analysis. SEM and TEM results showed spherical and well dispersed AgNPs with particle size ranging between 50 and 125 nm, more over the X-ray diffraction patterns signified their crystalline nature. FTIR spectra of different combinations exhibited consistent pattern of decreasing particle size with increasing ratios of extracts which was also reflected in their larvicidal activity. The larvicidal application of these nanoparticles was also studied against three mosquito vectors and found most effective against malaria vector, Anopheles stephensi. Risk assessment was monitored on HEK 293 cell lines and proved safer with range of 92.8–78.2% cell viability after 24 h. This is first report where size of AgNPs was controlled through phytoextract combinations and additive effect was validated through enhanced larvicidal activity and biocompatibility.

Keywords

Asafoetida Agave americana Larvicidal activity Silver nanoparticles Biocompatibility 

Notes

Acknowledgements

Authors are thankful for the financial assistance to Neh Satsangi in the form of INSPIRE Fellowship (IF-130922) by Department of Science and Technology, New Delhi. Facilities provided by National Institute of Oceanography, Goa, International Centre for Genetic and Engineering Biotechnology, New Delhi and Advanced Instrumentation Research Facility (AIRF), JNU, New Delhi, India for characterization studies are gratefully acknowledged. We are also thankful to Dr. Raj Kamal Bhatnagar, ICGEB, New Delhi for extending cell culture facility for conducting cytotoxicity experiments.

Compliance with Ethical Standards

Conflict of interest

Authors declare that they have no conflicts of interest.

References

  1. 1.
    B. Ankamwar, C. Damle, A. Ahmad, and M. Sastry (2005). J. Nanosci. Nanotechnol. 5, 1665.CrossRefGoogle Scholar
  2. 2.
    T. Santhoshkumar, A. A. Rahuman, G. Rajakumar, S. Marimuthu, A. Bagavan, C. Jayaseelan, A. Z. Abdul, G. Elango, and C. Kamaraj (2011). Parasitol. Res. 108, 693.CrossRefGoogle Scholar
  3. 3.
    C. D. Patil, S. V. Patil, H. P. Borase, B. K. Salunke, and R. B. Salunkhe (2012). Parasitol. Res. 110, 1815.CrossRefGoogle Scholar
  4. 4.
    M. Vanaja and G. Annadurai (2013). Appl. Nanosci. 3, 217.CrossRefGoogle Scholar
  5. 5.
    S. Basu, P. Maji, and J. Ganguly (2016). Appl. Nanosci. 6, 1.CrossRefGoogle Scholar
  6. 6.
    N. Satsangi, O. P. Singh, and S. Preet (2016). Int. J. Pharma. Res. Biosci. 5, 96.Google Scholar
  7. 7.
    R. Rajkumar, M. S. Shivakumar, S. Senthil Nathan, and K. Selvam (2018). J. Clust. Sci. 29, 1243.CrossRefGoogle Scholar
  8. 8.
    S. Vinoth, S. G. Shankar, P. Gurusaravanan, B. Janani, and J. Karthika Devi (2019). J. Clust. Sci. 30, 171.CrossRefGoogle Scholar
  9. 9.
    S. H. Kim, H. S. Lee, D. S. Ryu, S. J. Choi, and D. S. Lee (2011). Korean J. Microbiol. Biotechnol. 39, 77.Google Scholar
  10. 10.
    S. Ramya, T. Shanmugasundaram, and R. Balagurunathan (2015). J. Trace Elem. Med. Biol. 32, 30.CrossRefGoogle Scholar
  11. 11.
    V. Sujitha, K. Murugan, M. Paulpandi, C. Panneerselvam, U. Suresh, M. Roni, M. Nicoletti, P. Higuchi, J. Madhiyazhagan, J. Subramaniam, and D. Dinesh (2015). Parasitol. Res. 114, 3315.CrossRefGoogle Scholar
  12. 12.
    N. Satsangi and S. Preet, in 2016 IEEE Region Humanitarian Technology Conference (R10-HTC), vol. 10 (2016), p. 1.Google Scholar
  13. 13.
    P. Singh, S. Ahn, J. P. Kang, S. Veronika, Y. Huo, H. Singh, M. Chokkaligam, M. El-AgamyFarh, V. C. Aceituno, Y. J. Kim, and D. C. Yang (2018). Artif. Cells Nanomed. Biotechnol. 46, 2022.PubMedGoogle Scholar
  14. 14.
    P. Jamdagni, P. Khatri, and J. S. Rana (2018). J. King Saud. Univ. Sci. 30, 168.CrossRefGoogle Scholar
  15. 15.
    World Health Organization, Geneva (2015). www.who.int/malaria/publications/atoz/9789241564991/en.
  16. 16.
    World Health Organization, Geneva (2005). www.WHO/CDS/WHOPES/GCDPP/13.
  17. 17.
    T. Mosmann (1983). J. Immunol. Methods 65, 55.CrossRefGoogle Scholar
  18. 18.
    D. J. Finney, Probit Analysis (Cambridge University Press, Cambridge, 1971), 3rd edn, p. 32.Google Scholar
  19. 19.
    W. S. Abbott (1925). J. Econ. Entomol. 18, 265.CrossRefGoogle Scholar
  20. 20.
    P. Logeswari, S. Silambarasan, and J. Abraham (2015). J. Saudi Chem. Soc. 19, 311.CrossRefGoogle Scholar
  21. 21.
    S. L. Smitha, K. M. Nissamudeen, D. Philip, and K. G. Gopchandran (2008). Spectrochimica Acta. A Mol. Biomol. Spectr. 71, 186.CrossRefGoogle Scholar
  22. 22.
    R. Hienerwadel, A. Boussac, J. Breton, and C. Berthomieu (1996). Biochemistry 35, 15447.CrossRefGoogle Scholar
  23. 23.
    J. Sangeetha, J. Sandhya, and J. Philip (2014). Sci. Adv. Mater. 6, 1681.CrossRefGoogle Scholar
  24. 24.
    J. J. Zhu, X. H. Liao, X. N. Zhao, and H. Y. Chen (2001). Mater. Lett. 49, 91.CrossRefGoogle Scholar
  25. 25.
    Y. Sun and Y. Xia (2002). Science 298, 2176.CrossRefGoogle Scholar
  26. 26.
    K. Mallick, M. J. Witcomb, and M. S. Scurrell (2004). J. Mater. Sci. 39, 4459.CrossRefGoogle Scholar
  27. 27.
    G. A. El-Chaghaby and A. F. Ahmad (2011). Orient. J. Chem. 27, 929.Google Scholar
  28. 28.
    R. E. Kenari, F. Mohsenzadeh, and Z. R. Amiri (2014). Food Sci. Nutr. 2, 426.CrossRefGoogle Scholar
  29. 29.
    R. L. Anderson (1989). Env. Toxicol. Chem. 8, 403.CrossRefGoogle Scholar
  30. 30.
    P. M. Beldomenico and M. Begon (2010). Trends Ecol. Evol. 25, 21.CrossRefGoogle Scholar
  31. 31.
    S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry (2006). Biotechnol. Prog. 22, 577.CrossRefGoogle Scholar
  32. 32.
    H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra (2009). Colloids Surf. A Physicochem. Eng. Asp. 339, 134.CrossRefGoogle Scholar
  33. 33.
    G. Rajakumar and A. A. Rahuman (2011). Acta Trop. 118, 196.CrossRefGoogle Scholar
  34. 34.
    K. Velayutham, A. A. Rahuman, G. Rajakumar, S. M. Roopan, G. Elango, C. Kamaraj, S. Marimuthu, T. Santhoshkumar, M. Iyappan, and C. Siva (2013). Asian Pac. J. Trop. Med. 6, 95.CrossRefGoogle Scholar
  35. 35.
    G. Suganya, S. Karthi, and M. S. Shivakumar (2014). Parasitol. Res. 113, 1673.CrossRefGoogle Scholar
  36. 36.
    V. K. Dua, A. C. Pandey, K. Raghavendra, A. Gupta, T. Sharma, and A. P. Dash (2009). Malar. J. 8, 124.CrossRefGoogle Scholar
  37. 37.
    M. B. Isman and C. M. Machial (2006). Adv. Phytomed. 3, 29.CrossRefGoogle Scholar
  38. 38.
    L. Lucantoni, F. Giusti, M. Cristofaro, L. Pasqualini, F. Esposito, P. Lupetti, and A. Habluetzel (2006). Tissue Cell 38, 361.CrossRefGoogle Scholar
  39. 39.
    S. Sivapriyajothi, P. M. Kumar, K. Kovendan, J. Subramaniam, and K. Murugan (2014). J. Entomol. Acarol. Res. 46, 77.CrossRefGoogle Scholar
  40. 40.
    R. Bhuvaneswari, R. J. Xavier, and M. Arumugam (2016). J. King Saud. Univ. Sci. 28, 318.CrossRefGoogle Scholar
  41. 41.
    A. Philbert, G. Nkwengulila, and S. L. Lyantagaye (2014). Adv. Entomol. 2, 120.CrossRefGoogle Scholar
  42. 42.
    F. Faedmaleki, F. H. Shirazi, A. A. Salarian, H. A. Ashtiani, and H. Rastegar (2014). Iran. J. Pharm. Res. 13, 235.PubMedPubMedCentralGoogle Scholar
  43. 43.
    L. Braydich-Stolle, S. Hussain, J. J. Schlager, and M. C. Hofmann (2005). Toxicol. Sci. 88, 412.CrossRefGoogle Scholar
  44. 44.
    S. M. Hussain, K. L. Hess, J. M. Gearhart, K. T. Geiss, and J. J. Schlager (2005). Toxicol. In Vitro 19, 975.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Zoology, Faculty of ScienceDayalbagh Educational InstituteDayalbagh, AgraIndia

Personalised recommendations