Advertisement

Geometric and Optical Properties of Cluster Model of Yb-doped Silica Optical Fiber

  • Shihao Sun
  • Baonan Jia
  • Hechen Hu
  • Lihong Han
  • Gang Liu
  • Cong Gao
  • Jianjun Wang
  • Bin YangEmail author
  • Pengfei LuEmail author
Original Paper
  • 12 Downloads

Abstract

Based on the 6-membered ring cluster model, geometric and optical properties of cluster model of Yb-doped silica optical fiber is researched by using first-principles calculations. It can be revealed that the interstitial Yb-doped model is geometrically and optically closer to the local structures of Yb-doped silica optical fibers. In interstitial Yb-doped model, the coordination number of Yb to O is 6, and the oscillator strengths of excited levels are stronger than the substitutional Yb-doped model. We construct the Yb–Al co-doped and Yb–P co-doped models based on the interstitial Yb-doped model, and calculate the absorption spectra of these co-doped models. It can be proposed that co-doping with Yb and Al is responsible for the ~ 1030 nm absorption.

Keywords

First-principles Cluster model Energy levels Absorption spectra 

Notes

Acknowledgements

This work was supported by the Open Program of State Key Laboratory of Functional Materials for Informatics. We acknowledge the computational support from the Beijing Computational Science Research Center (CSRC).

References

  1. 1.
    T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet (2012). J. Chem. Phys. 136, 014503.CrossRefGoogle Scholar
  2. 2.
    R. Luo, W. Li, C. Hou, and P. Wang (2017). ECS J. Solid State Sci. 6, 138–143.CrossRefGoogle Scholar
  3. 3.
    K. Peng, Y. Wang, L. Ni, Z. Wang, C. Gao, H. Zhan, J. Wang, F. Jing, and A. Lin (2015). Laser Phys. 25, 065801.CrossRefGoogle Scholar
  4. 4.
    D. Richardson, J. Nilsson, and W. Clarkson (2010). J. Opt. Soc. Am. B 27, 63–92.CrossRefGoogle Scholar
  5. 5.
    M. Zervas and C. Codemard (2014). IEEE J. Sel. Top. Quant. 20, 219–241.CrossRefGoogle Scholar
  6. 6.
    Z. Wang, H. Zhan, L. Ni, K. Peng, X. Wang, J. Wang, F. Jing, and A. Lin (2015). Laser Phys. 25, 115103.CrossRefGoogle Scholar
  7. 7.
    J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, and M. Sun (2019). Rev. Phys. 4, 100026.CrossRefGoogle Scholar
  8. 8.
    K. Bi, D. Yang, J. Chen, Q. Wang, H. Wu, C. Lan, and Y. Yang (2019). Photonics Res. 7, 457–463.CrossRefGoogle Scholar
  9. 9.
    S. Lin, H. Wang, F. Wu, Q. Wang, X. Bai, D. Zu, J. Song, D. Wang, Z. Liu, Z. Li, N. Tao, K. Huang, M. Lei, B. Li, and H. Wu (2019). npj Flex. Electron. 3, 6.CrossRefGoogle Scholar
  10. 10.
    K. Mattsson and J. Broeng (2009). Int. Soc. Opt. Photonics 7195, 71950V.Google Scholar
  11. 11.
    S. Liu, H. Zhan, K. Peng, S. Sun, Y. Li, J. Jiang, L. Ni, X. Wang, J. Yu, and R. Zhu (2018). Opt. Fiber Technol. 46, 297–301.CrossRefGoogle Scholar
  12. 12.
    J. Koponen, M. Söderlund, J. Hoffman, D. Kliner, and J. Koplow (2007). Int. Soc. Opt. Photonics 6453, 64531E.Google Scholar
  13. 13.
    T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier (2013). Opt. Express 21, 8382–8392.CrossRefGoogle Scholar
  14. 14.
    I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Doua, and F. Salin (2007). Opt. Express 15, 1606–1611.CrossRefGoogle Scholar
  15. 15.
    C. Carlson, K. Keister, P. Dragic, A. Croteau, and J. Eden (2010). J. Opt. Soc. Am. B 27, 2087–2094.CrossRefGoogle Scholar
  16. 16.
    A. G. Chávez, A. Kir’Yanov, Y. O. Barmenkov, and N. Il’Ichev (2007). Laser Phys. Lett. 4, 734.CrossRefGoogle Scholar
  17. 17.
    S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof (2008). Opt. Express 16, 15540–15545.CrossRefGoogle Scholar
  18. 18.
    M. A. Melkumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov (2004). Quantum Electron. 34, 843–848.CrossRefGoogle Scholar
  19. 19.
    S. Ohara and Y. Kuroiwa (2009). Opt. Express 17, 14104–14108.CrossRefGoogle Scholar
  20. 20.
    R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna (1997). IEEE J. Quantum Electron. 33, 1049–1056.CrossRefGoogle Scholar
  21. 21.
    S. She, W. Li, C. Chang, Z. Li, J. Zheng, S. Gao, Y. Zhang, G. Li, Q. Gao, and W. Zhao (2018). Appl. Opt. 57, 7943–7949.CrossRefGoogle Scholar
  22. 22.
    R. Mozzi and B. Warren (1969). J. Appl. Cryst. 2, 164–172.CrossRefGoogle Scholar
  23. 23.
    C. Jesurum, V. Pulim, and L. W. Hobbs (1998). Nucl. Instrum. Methods B 141, 25–34.CrossRefGoogle Scholar
  24. 24.
    M. Sitarz, W. Mozgawa, and M. Handke (1999). J. Mol. Struct. 511, 281–285.CrossRefGoogle Scholar
  25. 25.
    A. Pasquarello and R. Car (1998). Phys. Rev. Lett. 80, 5145–5147.CrossRefGoogle Scholar
  26. 26.
    G. Kresse and J. Hafner (1993). Phys. Rev. B 47, 558–561.CrossRefGoogle Scholar
  27. 27.
    G. Kresse and J. Hafner (1994). Phys. Rev. B 49, 14251.CrossRefGoogle Scholar
  28. 28.
    G. Kresse and J. Furthmüller (1996). Phys. Rev. B 54, 11169.CrossRefGoogle Scholar
  29. 29.
    G. Kresse and D. Joubert (1999). Phys. Rev. B 59, 1758.CrossRefGoogle Scholar
  30. 30.
    B. Jia, P. Lu, Z. Peng, B. Yan, B. Yang, Y. Wang, and G.-D. Peng (2018). J. Lumin. 198, 384–388.CrossRefGoogle Scholar
  31. 31.
    L. Wu, P. Lu, R. Quhe, Q. Wang, C. Yang, P. Guan, and K. Yang (2018). J. Mater. Chem. A 6, 7933–7941.CrossRefGoogle Scholar
  32. 32.
    Q. Wang, X. Li, L. Wu, P. Lu, and Z. Di (2019). Phys. Status Solidi RRL 13, 1800461.CrossRefGoogle Scholar
  33. 33.
    H. Wang, R. P. Liu, Y. T. Li, X. J. Lü, Q. Wang, S. Q. Zhao, K. J. Yuan, Z. M. Cui, X. Li, S. Xin, R. Zhang, M. Lei, and Z. Q. Lin (2018). Joule 2, 337–348.CrossRefGoogle Scholar
  34. 34.
    J. Zhang, L. Han, Z. Guan, B. Jia, Z. Peng, X. Guan, B. Yan, G.-D. Peng, and P. Lu (2019). J. Lumin. 207, 346–350.CrossRefGoogle Scholar
  35. 35.
    K. Bi, M. H. Bi, Y. N. Hao, W. Luo, Z. M. Cai, X. H. Wang, and Y. H. Huang (2018). Nano Energy 51, 513–523.CrossRefGoogle Scholar
  36. 36.
    X. T. Wang, Y. Cui, T. Li, M. Lei, J. B. Li, and Z. M. Wei (2019). Adv. Opt. Mater. 7, 1801274.CrossRefGoogle Scholar
  37. 37.
    L. Wu, P. Lu, Y. Li, Y. Sun, J. Wong, and K. Yang (2018). J. Mater. Chem. A 6, 24389–24396.CrossRefGoogle Scholar
  38. 38.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  39. 39.
    P. Lu, T. Ren, B. Jia, B. Yan, G. Liu, M. Guo, Y. Wang, and G.-D. Peng (2018). IEEE J. Sel. Top. Quant. 24, 1–5.Google Scholar
  40. 40.
    M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery, T. Vreven, K. Kudin, and J. Burant, (Gaussian, Inc., Wallingford CT, 2013).Google Scholar
  41. 41.
    J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch (1992). J. Phys. Chem. 96, 135–149.CrossRefGoogle Scholar
  42. 42.
    Y. Wang and M. Dolg (1998). Theor. Chem. Acc. 100, 124–133.CrossRefGoogle Scholar
  43. 43.
    F. Tielens, C. Gervais, J. F. Lambert, F. Mauri, and D. Costa (2008). Chem. Mater. 20, 3336–3344.CrossRefGoogle Scholar
  44. 44.
    N. Richard, S. Girard, L. Martin-Samos, V. Cuny, A. Boukenter, Y. Ouerdane, and J.-P. Meunier (2011). J. Non-Cryst. Solids 357, 1994–1999.CrossRefGoogle Scholar
  45. 45.
    H. Uhlig, M.-J. Hoffmann, and S. Steeb (1998). Z. Naturforsch. A 53, 259–264.CrossRefGoogle Scholar
  46. 46.
    J. Sampaio and S. Gama (2004). Phys. Rev. B 69, 104203.CrossRefGoogle Scholar
  47. 47.
    U. Hoppe, R. K. Brow, D. Ilieva, P. Jóvári, and A. C. Hannon (2005). J. Non-Cryst. Solids 351, 3179–3190.CrossRefGoogle Scholar
  48. 48.
    P. Jelger, M. Engholm, L. Norin, and F. Laurell (2010). J. Opt. Soc. Am. B 27, 338–342.CrossRefGoogle Scholar
  49. 49.
    L. Zhang, T. Xue, D. He, M. Guzik, and G. Boulon (2015). Opt. Express 23, 1505–1511.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shihao Sun
    • 1
    • 3
  • Baonan Jia
    • 1
  • Hechen Hu
    • 1
  • Lihong Han
    • 1
  • Gang Liu
    • 2
  • Cong Gao
    • 3
  • Jianjun Wang
    • 3
  • Bin Yang
    • 4
    Email author
  • Pengfei Lu
    • 1
    Email author
  1. 1.State Key Laboratory of Information Photonics and Optical Communications, Ministry of EducationBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Beijing Key Laboratory of Space-Ground Interconnection and ConvergenceBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.Research Center of Laser FusionChina Academy of Engineering PhysicsMianyangChina
  4. 4.High-Tech Research and Development CenterMinistry of Science and TechnologyBeijingChina

Personalised recommendations