Green Synthesis of Gold Nanoparticles from Vitex negundo Leaf Extract: Characterization and In Vitro Evaluation of Antioxidant–Antibacterial Activity

  • S. Veena
  • T. DevasenaEmail author
  • S. S. M. Sathak
  • M. Yasasve
  • L. A. Vishal
Original Paper


Vitex negundo a tropical shrub from the Western Ghats possess various medicinal applications. This study reports the antioxidant and antibacterial activities of gold nanoparticles synthesized from V. negundo leaf extracts. The V. negundo leaf extracts were prepared by cold maceration process and green synthesis of gold nanoparticles was performed by gold reduction method. The characterization analyses, such as ultraviolet–visible spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray diffraction, scanning electron microscopy and transmission electron microscopy were carried out. The antioxidant activity of the gold nanoparticles were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and nitric oxide assay. The green synthesized nanoparticles were in the size range of 20–70 nm and exhibited notable antioxidant activity. The IC50 values of DPPH and nitric oxide assays were found to be 62.18 µg and 70.45 µg respectively. In addition, antibacterial analysis of six food borne pathogens (E. coli, B. subtilis, P. aeruginosa, S. aureus, S. typhimurium, and S. pyogenes) was studied by well-diffusion method. The gold nanoparticles displayed strong antibacterial activity against gram negative strains and moderate activity against gram positive strains.


Vitex negundo Gold nanoparticles Scanning electron microscopy Antioxidant assay Food pathogens 



We whole-heartedly thank Dr. S. L. Hoti, Director-In-Charge, Indian Council of Medical Research (ICMR)—National Institute of Traditional Medicine (NITM), Belagavi, for helping us in collecting the plant materials. The work was funded by Junior Research Fellowship provided by Maulana Azad National Fellowship, University Grants Commission, Govt. of India to the research scholar Mrs. S. Veena, Fellowship No. MANF-2014-15-CHR-TAM-40072.


  1. 1.
    S. Prakash, R. Raxmasuburayan, V. S. Ramkumar, E. Kannapiran, A. Palavesam, and G. Immanuel (2016). Biomed. Pharmacother. 83, 648.CrossRefGoogle Scholar
  2. 2.
    C. J. Zheng, H. Q. Li, S. C. Ren, C. L. Xu, K. Rahman, L. P. Qin, and Y. H. Sun (2015). Phytother. Res. 29, 633.CrossRefGoogle Scholar
  3. 3.
    S. Saklani, A. P. Mishra, H. Chandra, M. S. Atanassova, M. Stankovic, B. Sati, M. A. Shariati, M. Nigam, M. U. Khan, S. Plygun, H. Elmsellem, and H. A. R. Suleria (2017). Plants. 6, 45.CrossRefGoogle Scholar
  4. 4.
    M. S. Bansod and U. N. Harle (2009). Pharmacol. Online. 1, 286.Google Scholar
  5. 5.
    J. Patel, S. Shah, S. Deshpande, and G. Shah (2009). Asian J. Pharm. Clin. Res. 2, 81.Google Scholar
  6. 6.
    C. Chandramu, R. D. Manohar, D. G. L. Krupadanam, and R. V. Dashavantha (2003). Phyther. Res. 17, 129.CrossRefGoogle Scholar
  7. 7.
    V. R. Tandon and R. K. Gupta (2006). Indian J. Med. Res. 124, 447.Google Scholar
  8. 8.
    L. Gautam, S. Shrestha, P. Wagle, and B. Tamrakar (2010). Sci. World. 6, 27.CrossRefGoogle Scholar
  9. 9.
    S. Dassani, T. K. Sharma, R. Singh, and M. M. Pandey (2016). Int. J. Adv. Res. 4, 150.CrossRefGoogle Scholar
  10. 10.
    K. Anandalakshmi and J. Venugobal (2017). Med. Chem. (Los. Angeles) 7, 218.Google Scholar
  11. 11.
    M. Zagar, A. A. Hamid, F. A. Bakar, M. N. Shamsudin, K. Shameli, F. Jahanshiri, and F. Farahani (2011). Molecules. 16, 6667.CrossRefGoogle Scholar
  12. 12.
    P. Kathireswari, S. Gomathi, and K. Saminathan (2014). Int. J. Curr. Microbiol. App. Sci. 3, 614.Google Scholar
  13. 13.
    K. S. Nagarsekar, M. S. Nagarsekar, and S. R. Kulkarani (2011). Indian J. Pharm. Sci. 73, 422.Google Scholar
  14. 14.
    S. Veena, T. Devasena, L. A. Vishal, S. M. S. Sameer, and S. Arokiyaraj (2018). Saudi J. Biol. Sci. 26, 455.Google Scholar
  15. 15.
    M. Dhayalan, M. I. J. Denison, M. Ayyar, N. N. Gandhi, K. Krishnan, and B. Abdulhadi (2018). J. Photochem. Photobiol. B. 183, 251.CrossRefGoogle Scholar
  16. 16.
    R. A. Mothana, J. M. Khaled, O. M. Noman, A. Kuamr, M. F. Alajimi, A. J. Al-Rehaily, and M. Kurkcuoglu (2018). BMC Complement Altern. Med. 18, 237.CrossRefGoogle Scholar
  17. 17.
    T. S. Moe, H. H. Win, T. T. Hlaing, W. W. Lwin, Z. M. Htet, and K. M. Mya (2018). J. Integr. Med. 16, 358.CrossRefGoogle Scholar
  18. 18.
    B. Bhuyan, A. Paul, B. Paul, S. S. Dhar, and P. Dutta (2017). J. Photochem. Photobiol. B. 17, 210.CrossRefGoogle Scholar
  19. 19.
    N. Ahmad, S. Bhatnagar, R. Saxena, D. Iqbal, A. K. Ghosh, and R. Dutta (2017). Mater. Sci. Eng. C Mater. Biol. Appl. 78, 553.CrossRefGoogle Scholar
  20. 20.
    M. Nagalingam, V. N. Kalpana, V. Devi Rajeswari, and A. Panneerselvam (2018). Biotechnol. Rep. 19, 268.Google Scholar
  21. 21.
    G. F. S. Cabrera, M. M. Balbin, P. J. G. Eugenio, C. S. Zapanta, J. J. Monserate, J. R. Salazar, and C. N. Mingala (2017). Biochem. Biophys. Res. Commun. 484, 774.CrossRefGoogle Scholar
  22. 22.
    E. Izadi, A. Rasooli, A. Akbarzadeh, and S. Davaran (2017). Drug Res. (Stuttg). 67, 266.CrossRefGoogle Scholar
  23. 23.
    R. Emmanuel, M. Saravanan, M. Ovais, S. Padamavathy, Z. K. Shinwari, and P. Prakash (2017). Microb. Pathog. 113, 295.CrossRefGoogle Scholar
  24. 24.
    J. K. Patra and K. H. Baek (2016). Int. J. Nanomed. 14, 4691.Google Scholar
  25. 25.
    L. Shi, P. Tang, W. Zhang, Y. Zhao, L. Zhang, and H. Zhang (2016). Trop. J. Pharm. Res. 16, 185.CrossRefGoogle Scholar
  26. 26.
    J. Siegel, K. Zaruba, V. Svorcik, K. Kroumanova, L. Burketova, and J. Martinec (2018). Nanoscale Res. Lett. 13, 95.CrossRefGoogle Scholar
  27. 27.
    S. Honary, H. Barabadi, E. Gharaei-Fathabad, and F. Naghibi (2013). Trop. J. Pharm. Res. 12, 7.Google Scholar
  28. 28.
    G. Keerthi and K. Padma (2012). Int. J. Drug Dev. Res. 4, 192.Google Scholar
  29. 29.
    F. Bano, M. Baber, A. Ali, Z. Shah, and S. A. Muhammed (2017). Pharmacogn. 13, 33.Google Scholar
  30. 30.
    S. K. Kumar, R. Chelliah, S. Shanmugam, N. B. Varukattu, D. H. Oh, K. Kathiresan, and M. H. Wang (2018). J. Photochem. Photobiol. B. 185, 126.CrossRefGoogle Scholar
  31. 31.
    S. Naraginti and Y. Li (2017). J. Nanosci. Nanotechnol. 170, 225.Google Scholar
  32. 32.
    M. Sriramalu and S. Sumathi (2017). Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 45012.CrossRefGoogle Scholar
  33. 33.
    P. P. Kulkarni, A. D. Virkar, and P. D’Mello (2018). Ind. J. Pharm. Sci. 70, 838.Google Scholar
  34. 34.
    S. K. Panda, Y. K. Mohanta, L. Padhi, Y. H. Park, T. K. Mohanta, and H. Bae (2016). Molecules. 21, 293.CrossRefGoogle Scholar
  35. 35.
    S. Perveen, N. Safdar, G. E. Chaudhry, and A. Yasmin (2018). World J. Microbiol. Biotechnol. 34, 118.CrossRefGoogle Scholar
  36. 36.
    L. Zhang, K. Xia, Y. Y. Bai, Y. Tang, Y. Deng, J. Chen, W. Qian, H. Shen, Z. Zhang, S. Ju, and N. He (2014). J. Biomed. Nanotechnol. 10, 1440.CrossRefGoogle Scholar
  37. 37.
    Y. Tang, Z. Ali, J. Zou, K. Yang, X. Mou, Z. Li, Y. Deng, Z. Lu, C. Ma, M. A. Shah, S. Elingarami, H. Yang, and N. He (2014). J. Nanosci. Nanotechnol. 14, 4886.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Veena
    • 1
  • T. Devasena
    • 1
    Email author
  • S. S. M. Sathak
    • 2
  • M. Yasasve
    • 2
  • L. A. Vishal
    • 2
  1. 1.Centre for Nano Science and Technology, A. C. Tech CampusAnna UniversityChennaiIndia
  2. 2.Department of BiotechnologySree Sastha Institute of Engineering and Technology (Affiliated to Anna University)ChennaiIndia

Personalised recommendations