Advertisement

Journal of Cluster Science

, Volume 30, Issue 6, pp 1565–1582 | Cite as

Doxorubicin Loaded Green Synthesized Nanoceria Decorated Functionalized Graphene Nanocomposite for Cancer-Specific Drug Release

  • Prakash Kumar PalaiEmail author
  • Aparna Mondal
  • Chandra Kanti Chakraborti
  • Indranil Banerjee
  • Kunal Pal
  • V. Shanmuga Sharan Rathnam
Original Paper
  • 123 Downloads

Abstract

In the present study design, the PEGylated nanoceria decorated reduced graphene nanocomposite (RGO-CeNPs-PEG) was successfully prepared by eco-friendly non-toxic green synthesis following syn-graphenization method, and evaluated as an efficient and reliable pH-sensitive nano-carrier. During green synthesis, aqueous leaf extract of Azadirachta indica (neem) was used as a reducing agent and the graphene oxide (GO) was activated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide for covalent functionalization by methoxy amino polyethylene glycol. The prepared Smart pH stimuli responded nanoplatform was thoroughly characterized by various analytical techniques. The values of average particle size and hydrodynamic diameter of naturally prepared nanoceria may be suitable for biomedical application. Considering drug loading and release studies, it may be concluded that the higher drug loading and more pH-responsive release of DOX from RGO-CeNPs-PEG lead to a promising nanocarrier for the anticancer drug. Furthermore, DOX-loaded RGO-CeNPs-PEG had lesser harmful effect on normal cells than cancer cells as compared with free DOX, while increased cytotoxicity was evidenced on the cancer cell line against the former sample than the covalently conjugated RGO-PEG-DOX. So, the successful distribution and release of the anticancer drug into acidic microenvironment of the cancerous cells would bring about excellent therapeutic efficacy with reduced side effects than pure GO.

Keywords

Reduced graphene oxide Nanoceria Doxorubicin Nanocomposite Cytotoxicity Controlled drug release 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10876_2019_1599_MOESM1_ESM.doc (302 kb)
Supplementary material 1 (DOC 302 kb)

References

  1. 1.
    W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong (2011). Biomaterials 32, 8555–8561.  https://doi.org/10.1016/j.biomaterials.2011.07.071.CrossRefGoogle Scholar
  2. 2.
    F. S. Sangsefidi, M. Nejati, J. Verdi, and M. Salavati-Niasari (2017). J. Clean Prod. 156, 741–749.  https://doi.org/10.1016/j.jclepro.2017.04.114.CrossRefGoogle Scholar
  3. 3.
    M. V. Arasu, R. Thirumamagal, M. P. Srinivasan, N. A. Al-Dhabi, A. Ayeshamariam, D. Saravana Kumar, N. Punithavelan, and M. Jayachandran (2017). J. Photochem. Photobiol. B: Biology 173, 50–60. http://dx.doi.org/10.1016/j.jphotobiol.2017.05.032.
  4. 4.
    L. Zhang, Z. Wang, Z. Lu, H. Shen, J. Huang, Q. Zhao, M. Liu, N. He, and Z. Zhang (2013). J. Mater. Chem. B 1, 749–755.  https://doi.org/10.1039/C2TB00096B.CrossRefGoogle Scholar
  5. 5.
    S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nguyen, and R. S. Ruoff (2006). J. Mater. Chem. 16, 155–158.  https://doi.org/10.1039/B512799H.CrossRefGoogle Scholar
  6. 6.
    Z. M. Milani, F. Charbgoo, and M. Darroudi (2017). Ceram. Int. 43, 14572–14581.  https://doi.org/10.1016/j.ceramint.2017.08.177.CrossRefGoogle Scholar
  7. 7.
    S. Simoes, J. N. Moreira, C. Fonseca, N. Düzgüneş, and M. C. P. de Lima (2004). Adv. Drug Deliv. Rev. 56, 947–965.  https://doi.org/10.1016/j.addr.2003.10.038.CrossRefPubMedGoogle Scholar
  8. 8.
    A. E. Felber, M.-H. Dufresne, and J.-C. Leroux (2012). Adv. Drug Deliv. Rev. 64, 979–992.  https://doi.org/10.1016/j.addr.2011.09.006.CrossRefPubMedGoogle Scholar
  9. 9.
    Y.-S. Huang, Y.-J. Lu, and J.-P. Chen (2017). J. Magn. Magn. Mater. 427, 34–40.  https://doi.org/10.1016/j.jmmm.2016.10.042.CrossRefGoogle Scholar
  10. 10.
    S. Sangomla, M. A. Saifi, A. Khurana, and C. Godugu (2018). J. Trace Elem. Med. Biol. 47, 53–62.  https://doi.org/10.1016/j.jtemb.2018.01.016.CrossRefPubMedGoogle Scholar
  11. 11.
    B. Ardeshirzadeh, N. A. Anaraki, M. Irani, L. R. Rad, and S. Shamshiri (2015). Mater. Sci. Eng. C 48, 384–390.  https://doi.org/10.1016/j.msec.2014.12.039.CrossRefGoogle Scholar
  12. 12.
    H. Lei, M. Xie, Y. Zhao, F. Zhang, Y. Xu, and J. Xie (2016). Ceram. Int. 42, 17798–17805.  https://doi.org/10.1016/j.ceramint.2016.08.108.CrossRefGoogle Scholar
  13. 13.
    H. E. Liying, S. U. Yumin, J. Lanhong, and S. H. I. Shikao (2015). J. Rare Earths 33, 791–799.  https://doi.org/10.1016/S1002-0721(14)60486-5.CrossRefGoogle Scholar
  14. 14.
    L. Peng, X. He, P. Zhang, J. Zhang, Y. Li, J. Zhang, Y. Ma, Y. Ding, Z. Wu, Z. Chai, and Z. Zhang (2014). J. Mol. Sci. 15, 6072–6085.  https://doi.org/10.3390/ijms15046072.CrossRefGoogle Scholar
  15. 15.
    B. Mandal and A. Mondal (2015). RSC Adv. 5, 43081–43091.  https://doi.org/10.1039/C5RA03758A.CrossRefGoogle Scholar
  16. 16.
    S. Zhang, K. Yang, L. Z. Feng, and Z. Liu (2011). Carbon 49, 4040–4049.  https://doi.org/10.1016/j.carbon.2011.05.056.CrossRefGoogle Scholar
  17. 17.
    T. Zhou, X. Zhou, and D. Xing (2014). Biomaterials 35, 4185–4194.  https://doi.org/10.1016/j.biomaterials.2014.01.044.CrossRefPubMedGoogle Scholar
  18. 18.
    D. Dutta, R. Mukherjee, M. Patra, M. Banik, R. Dasgupta, M. Mukherjee, and T. Basu (2016). Colloids Surf. B: Biointerfaces 147, 45–53.  https://doi.org/10.1016/j.colsurfb.2016.07.045.CrossRefPubMedGoogle Scholar
  19. 19.
    K. Anupriya, E. Vivek, and B. Subramanian (2014). J. Alloys Compd. 590, 406–410.  https://doi.org/10.1016/j.jallcom.2013.12.121.CrossRefGoogle Scholar
  20. 20.
    Y.-M. Li, X.-P. Chang, Y.-J. Cheng, S. Chen, F. He, and R.-X. Zhuo (2017). Colloids Surf. B: Biointerfaces 153, 220–228.  https://doi.org/10.1016/j.colsurfb.2017.02.022.CrossRefPubMedGoogle Scholar
  21. 21.
    A. R. K. Sasikala, R. G. Thomas, A. R. Unnithan, B. Saravanakumar, Y. Y. Jeong, C. H. Park, and C. S. Kim (2016). Sci. Rep. 6, 20543.  https://doi.org/10.1038/srep20543.CrossRefGoogle Scholar
  22. 22.
    H. El-Hamshary, M. H. El-Newehy, M. M. Abdulhameed, A. El-Faham, and A. S. Elsherbiny (2019). Mater. Chem. Phys. 225, 122–132.  https://doi.org/10.1016/j.matchemphys.2018.12.054.CrossRefGoogle Scholar
  23. 23.
    S. Gurunathan, J. W. Han, V. Eppakayala, and J.-H. Kim (2013). Colloids Surf. B: Biointerfaces 102, 772–777.  https://doi.org/10.1016/j.colsurfb.2012.09.011.CrossRefPubMedGoogle Scholar
  24. 24.
    T. Pirmohamed, J. M. Dowding, S. Singh, B. Wasserman, E. Heckert, A. S. Karakoti, J. E. King, S. Seal, and W. T. Self (2010). Chem. Commun. 46, 2736–2738.  https://doi.org/10.1039/B922024K.CrossRefGoogle Scholar
  25. 25.
    G. Cheng, W. Guo, L. Han, E. Chen, L. Kong, L. Wang, W. Ai, N. Song, H. Li, and H. Chen (2013). Toxicol. In Vitro 27, 1082–1088.  https://doi.org/10.1016/j.tiv.2013.02.005.CrossRefPubMedGoogle Scholar
  26. 26.
    A. S. Karakoti, S. Singh, A. Kumar, M. Malinska, S. V. Kuchibhatla, K. Wozniak, W. T. Self, and S. Seal (2009). J. Am. Chem. Soc. 131, 14144–14145.  https://doi.org/10.1021/ja9051087.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, and Y. Chen, Adv. Mater. 21, 1275-1279.  https://doi.org/10.1002/adma.200801617.CrossRefGoogle Scholar
  28. 28.
    J. Shen, M. Shi, B. Yan, H. Ma, N. Li, Y. Hu, and M. Ye (2010). Colloids Surf. B: Biointerfaces 82, 434–438.  https://doi.org/10.1016/j.colsurfb.2010.07.035.CrossRefGoogle Scholar
  29. 29.
    J. Calvache-Muñoz, F. A. Prado, and J. E. Rodríguez-Páez (2017). Colloids Surf. A 529, 146–159.  https://doi.org/10.1016/j.colsurfa.2017.05.059.CrossRefGoogle Scholar
  30. 30.
    S. A. Khan and A. Ahmad (2013). Mater. Res. Bull. 48, 4134–4138.  https://doi.org/10.1016/j.materresbull.2013.06.038.CrossRefGoogle Scholar
  31. 31.
    S. Chaudhary, P. Sharma, R. Kumar, and S. K. Mehta (2015). Ceram. Int. 41, 10995–11003.  https://doi.org/10.1016/j.ceramint.2015.05.044.CrossRefGoogle Scholar
  32. 32.
    D. K. Subbiah, A. J. Kulandaisamy, R. B. George, P. Shankar, G. K. Mani, K. J. Babu, and J. B. B. Rayappan (2018). J. Alloys Compd. 753, 771–780.  https://doi.org/10.1016/j.jallcom.2018.04.248.CrossRefGoogle Scholar
  33. 33.
    X. Yang, Y. Ouyang, F. Wub, Y. Hub, Y. Jib, and Z. Wu (2017). Sens. Actuators B 238, 40–47.  https://doi.org/10.1016/j.snb.2016.07.016.CrossRefGoogle Scholar
  34. 34.
    Z. Ji, X. Shen, J. Yang, G. Zhu, and K. Chen (2014). Appl. Catal. B Environ. 144, 454–461.  https://doi.org/10.1016/j.apcatb.2013.07.052.CrossRefGoogle Scholar
  35. 35.
    Y. H. Park, S. Y. Park, and I. In (2015). J. Ind. Eng. Chem. 30, 190–196.  https://doi.org/10.1016/j.jiec.2015.05.021.CrossRefGoogle Scholar
  36. 36.
    M. Siriviriyanun, T. Popova, L. V. Imae, C. Y. Kiew, W. F. Looi, H. B. Lee Wong, and L. Y. Chung (2015). Chem. Eng. J. 281, 771–781.  https://doi.org/10.1016/j.cej.2015.07.024.CrossRefGoogle Scholar
  37. 37.
    M. J. Kishor Kumar and J. T. Kalathi (2018). J. Alloys Compd. 748, 348–354.  https://doi.org/10.1016/j.jallcom.2018.03.096.CrossRefGoogle Scholar
  38. 38.
    H. Li, C. Li, C. Jiao, and S. Wang (2015). Ceram. Int. 41, 10170–10176.  https://doi.org/10.1016/j.ceramint.2015.04.118.CrossRefGoogle Scholar
  39. 39.
    K. Krishnamoorthy, M. Veerapandian, K. Yun, and S.-J. Kim (2013). Carbon 53, 38–49.  https://doi.org/10.1016/j.carbon.2012.10.013.CrossRefGoogle Scholar
  40. 40.
    J. Li, G. Wang, H. Zhu, M. Zhang, X. Zheng, Z. Di, X. Liu, and X. Wang (2014). Sci. Rep. 4, 4359.  https://doi.org/10.1038/srep04359.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    S. Thakur and P. Patil (2014). Sens. Actuators B 194, 260–268.  https://doi.org/10.1016/j.snb.2013.12.067.CrossRefGoogle Scholar
  42. 42.
    R. Singh and S. Singh (2015). Colloids Surfaces B Biointerfaces 132, 78–84.  https://doi.org/10.1016/j.colsurfb.2015.05.005.CrossRefPubMedGoogle Scholar
  43. 43.
    H. J. Byeon, Q. le Thao, S. Lee, S. Y. Min, E. S. Lee, B. S. Shin, H. G. Choi, and Y. S. Youn (2016). J. Control. Release 225, 301–313.  https://doi.org/10.1016/j.jconrel.2016.01.046.CrossRefPubMedGoogle Scholar
  44. 44.
    R. Gessner, A. Waicz, B.-R. Lieske, K. Mäder Paulke, and R. Müller (2000). Int. J. Pharm. 196, 245–249.  https://doi.org/10.1016/S0378-5173(99)00432-9.CrossRefPubMedGoogle Scholar
  45. 45.
    S. Honary and F. Z. Mazandaran (2013). Trop. J. Pharm. Res. 12, 265–273.  https://doi.org/10.4314/tjpr.v12i2.20.CrossRefGoogle Scholar
  46. 46.
    P. R. Sarika and N. R. James (2016). Carbohydr. Polym. 148, 354–361.  https://doi.org/10.1016/j.carbpol.2016.04.073.CrossRefPubMedGoogle Scholar
  47. 47.
    Y. Lv, L. Tao, S. W. A. Bligh, H. Yang, Q. Pan, and L. Zhu (2016). Mater. Sci. Eng. C 59, 652–660.  https://doi.org/10.1016/j.msec.2015.10.065.CrossRefGoogle Scholar
  48. 48.
    S. Patra, S. Mukherjee, A. K. Barui, A. Ganguly, B. Sreedhar, and C. R. Patra (2015). Mater. Sci. Eng. C 53, 298–309.  https://doi.org/10.1016/j.msec.2015.04.048.CrossRefGoogle Scholar
  49. 49.
    C. Elvira, A. Gallardo, J. S. Roman, and A. Cifuentes (2005). Molecules 10, 114–125.  https://doi.org/10.3390/10010114.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    X. Wang, C. Li, N. Fan, J. Li, Z. He, and J. Sun (2017). Mater. Sci. Eng. C 78, 370–375.  https://doi.org/10.1016/j.msec.2017.04.060.CrossRefGoogle Scholar
  51. 51.
    S. Bayda, M. Hadla, S. Palazzolo, V. Kumar, I. Caligiuri, E. Ambrosi, E. Pontoglio, M. Agostini, T. Tuccinardi, A. Benedetti, P. Riello, V. Canzonieri, G. Corona, G. Toffoli, and F. Rizzolio (2017). J. Control. Release 248, 144–152.  https://doi.org/10.1016/j.jconrel.2017.01.022.CrossRefPubMedGoogle Scholar
  52. 52.
    X. Zhang, L. Meng, Q. Lu, Z. Fei, and P. J. Dyson (2009). Biomaterials 30, 6041–6047.  https://doi.org/10.1016/j.biomaterials.2009.07.025.CrossRefPubMedGoogle Scholar
  53. 53.
    Y. Fu and W. J. Kao (2010). Expert Opin. Drug Deliv. 7, 429–444.  https://doi.org/10.1517/17425241003602259.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    K. Yang, J. Wan, S. Zhang, Y. Zhang, S.-T. Lee, and Z. Liu (2011). ACS Nano 5, 516–522.  https://doi.org/10.1021/nn1024303.CrossRefPubMedGoogle Scholar
  55. 55.
    J. M. Perez, A. Asati, S. Nath, and C. Kaittanis (2008). Small 4, 552–556.  https://doi.org/10.1002/smll.200700824.CrossRefPubMedGoogle Scholar
  56. 56.
    J. Chen, H. Liu, C. Zhao, G. Qin, G. Xi, T. Li, X. Wang, and T. Chen (2014). Biomaterials 35, 4986–4995.  https://doi.org/10.1016/j.biomaterials.2014.02.032.CrossRefPubMedGoogle Scholar
  57. 57.
    L. P. Franchi, B. B. Manshian, T. A. J. de Souza, S. J. Soenen, E. Y. Matsubara, J. M. Rosolen, and C. S. Takahashi (2015). Toxicol. In Vitro 29, 1319–1331.  https://doi.org/10.1016/j.tiv.2015.05.010.CrossRefPubMedGoogle Scholar
  58. 58.
    M. S. Wason, J. Colon, S. Das, S. Seal, J. Turkson, J. Zhao, and C. H. Baker (2013). Nanomed. Nanotechnol. Biol. Med. 9, 558–569.  https://doi.org/10.1016/j.nano.2012.10.010.CrossRefGoogle Scholar
  59. 59.
    M. Darroudi, M. Hakimi, M. Sarani, R. K. Oskuee, A. K. Zak, and L. Gholami (2013). Ceram. Int. 39, 6917–6921.  https://doi.org/10.1016/j.ceramint.2013.02.026.CrossRefGoogle Scholar
  60. 60.
    J. Colon, N. Hsieh, A. Ferguson, P. Kupelian, S. Seal, D. W. Jenkins, and C. H. Baker (2010). Nanomed. Nanotechnol. Biol. Med. 6, 698–705.  https://doi.org/10.1016/j.nano.2010.01.010.CrossRefGoogle Scholar
  61. 61.
    M. S. Lord, M. S. Jung, W. Y. Teoh, C. Gunawan, J. A. Vassie, R. Amal, and J. M. Whitelock (2012). Biomaterials 33, 7915–7924.  https://doi.org/10.1016/j.biomaterials.2012.07.024.CrossRefPubMedGoogle Scholar
  62. 62.
    L. D. Marzi, A. Monaco, J. D. Lapuente, D. Ramos, M. Borras, M. D. Gioacchino, S. Santucci, and A. Poma (2013). Int. J. Mol. Sci. 14, 3065–3077.  https://doi.org/10.3390/ijms14023065.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    M. Pešić, A. Podolski-Renić, S. Stojković, B. Matović, D. Zmejkoski, V. Kojić, G. Bogdanović, A. Pavićević, M. Mojović, A. Savić, I. Milenković, A. Kalauzi, and K. Radotić (2015). Chem. Biol. Interact. 232, (85–93), 2015.  https://doi.org/10.1016/j.cbi.2015.03.0130009-2797/.CrossRefGoogle Scholar
  64. 64.
    F. Abbas, T. Jan, J. Iqbal, and M. S. H. Naqvi (2015). Curr. Appl. Phys. 15, 1428–1434.  https://doi.org/10.1016/j.cap.2015.08.007.CrossRefGoogle Scholar
  65. 65.
    R. Justin, K. Tao, S. Román, D. Chen, Y. Xu, X. Geng, I. M. Ross, R. T. Grant, A. Pearson, G. Zhou, S. M. Neil, K. Sun, and B. Chen (2016). Carbon 97, 54–70.  https://doi.org/10.1016/j.carbon.2015.06.070.CrossRefGoogle Scholar
  66. 66.
    P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref (2010). Nat. Mater. 9, 172–178.  https://doi.org/10.1038/nmat2608.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryNational Institute of TechnologyRourkelaIndia
  2. 2.Department of Pharmaceutical TechnologyNSHM Knowledge CampusKolkataIndia
  3. 3.Department of Biotechnology and Medical EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations