Journal of Cluster Science

, Volume 30, Issue 6, pp 1565–1582 | Cite as

Doxorubicin Loaded Green Synthesized Nanoceria Decorated Functionalized Graphene Nanocomposite for Cancer-Specific Drug Release

  • Prakash Kumar PalaiEmail author
  • Aparna Mondal
  • Chandra Kanti Chakraborti
  • Indranil Banerjee
  • Kunal Pal
  • V. Shanmuga Sharan Rathnam
Original Paper


In the present study design, the PEGylated nanoceria decorated reduced graphene nanocomposite (RGO-CeNPs-PEG) was successfully prepared by eco-friendly non-toxic green synthesis following syn-graphenization method, and evaluated as an efficient and reliable pH-sensitive nano-carrier. During green synthesis, aqueous leaf extract of Azadirachta indica (neem) was used as a reducing agent and the graphene oxide (GO) was activated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide for covalent functionalization by methoxy amino polyethylene glycol. The prepared Smart pH stimuli responded nanoplatform was thoroughly characterized by various analytical techniques. The values of average particle size and hydrodynamic diameter of naturally prepared nanoceria may be suitable for biomedical application. Considering drug loading and release studies, it may be concluded that the higher drug loading and more pH-responsive release of DOX from RGO-CeNPs-PEG lead to a promising nanocarrier for the anticancer drug. Furthermore, DOX-loaded RGO-CeNPs-PEG had lesser harmful effect on normal cells than cancer cells as compared with free DOX, while increased cytotoxicity was evidenced on the cancer cell line against the former sample than the covalently conjugated RGO-PEG-DOX. So, the successful distribution and release of the anticancer drug into acidic microenvironment of the cancerous cells would bring about excellent therapeutic efficacy with reduced side effects than pure GO.


Reduced graphene oxide Nanoceria Doxorubicin Nanocomposite Cytotoxicity Controlled drug release 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10876_2019_1599_MOESM1_ESM.doc (302 kb)
Supplementary material 1 (DOC 302 kb)


  1. 1.
    W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong (2011). Biomaterials 32, 8555–8561. Scholar
  2. 2.
    F. S. Sangsefidi, M. Nejati, J. Verdi, and M. Salavati-Niasari (2017). J. Clean Prod. 156, 741–749. Scholar
  3. 3.
    M. V. Arasu, R. Thirumamagal, M. P. Srinivasan, N. A. Al-Dhabi, A. Ayeshamariam, D. Saravana Kumar, N. Punithavelan, and M. Jayachandran (2017). J. Photochem. Photobiol. B: Biology 173, 50–60.
  4. 4.
    L. Zhang, Z. Wang, Z. Lu, H. Shen, J. Huang, Q. Zhao, M. Liu, N. He, and Z. Zhang (2013). J. Mater. Chem. B 1, 749–755. Scholar
  5. 5.
    S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nguyen, and R. S. Ruoff (2006). J. Mater. Chem. 16, 155–158. Scholar
  6. 6.
    Z. M. Milani, F. Charbgoo, and M. Darroudi (2017). Ceram. Int. 43, 14572–14581. Scholar
  7. 7.
    S. Simoes, J. N. Moreira, C. Fonseca, N. Düzgüneş, and M. C. P. de Lima (2004). Adv. Drug Deliv. Rev. 56, 947–965. Scholar
  8. 8.
    A. E. Felber, M.-H. Dufresne, and J.-C. Leroux (2012). Adv. Drug Deliv. Rev. 64, 979–992. Scholar
  9. 9.
    Y.-S. Huang, Y.-J. Lu, and J.-P. Chen (2017). J. Magn. Magn. Mater. 427, 34–40. Scholar
  10. 10.
    S. Sangomla, M. A. Saifi, A. Khurana, and C. Godugu (2018). J. Trace Elem. Med. Biol. 47, 53–62. Scholar
  11. 11.
    B. Ardeshirzadeh, N. A. Anaraki, M. Irani, L. R. Rad, and S. Shamshiri (2015). Mater. Sci. Eng. C 48, 384–390. Scholar
  12. 12.
    H. Lei, M. Xie, Y. Zhao, F. Zhang, Y. Xu, and J. Xie (2016). Ceram. Int. 42, 17798–17805. Scholar
  13. 13.
    H. E. Liying, S. U. Yumin, J. Lanhong, and S. H. I. Shikao (2015). J. Rare Earths 33, 791–799. Scholar
  14. 14.
    L. Peng, X. He, P. Zhang, J. Zhang, Y. Li, J. Zhang, Y. Ma, Y. Ding, Z. Wu, Z. Chai, and Z. Zhang (2014). J. Mol. Sci. 15, 6072–6085. Scholar
  15. 15.
    B. Mandal and A. Mondal (2015). RSC Adv. 5, 43081–43091. Scholar
  16. 16.
    S. Zhang, K. Yang, L. Z. Feng, and Z. Liu (2011). Carbon 49, 4040–4049. Scholar
  17. 17.
    T. Zhou, X. Zhou, and D. Xing (2014). Biomaterials 35, 4185–4194. Scholar
  18. 18.
    D. Dutta, R. Mukherjee, M. Patra, M. Banik, R. Dasgupta, M. Mukherjee, and T. Basu (2016). Colloids Surf. B: Biointerfaces 147, 45–53. Scholar
  19. 19.
    K. Anupriya, E. Vivek, and B. Subramanian (2014). J. Alloys Compd. 590, 406–410. Scholar
  20. 20.
    Y.-M. Li, X.-P. Chang, Y.-J. Cheng, S. Chen, F. He, and R.-X. Zhuo (2017). Colloids Surf. B: Biointerfaces 153, 220–228. Scholar
  21. 21.
    A. R. K. Sasikala, R. G. Thomas, A. R. Unnithan, B. Saravanakumar, Y. Y. Jeong, C. H. Park, and C. S. Kim (2016). Sci. Rep. 6, 20543. Scholar
  22. 22.
    H. El-Hamshary, M. H. El-Newehy, M. M. Abdulhameed, A. El-Faham, and A. S. Elsherbiny (2019). Mater. Chem. Phys. 225, 122–132. Scholar
  23. 23.
    S. Gurunathan, J. W. Han, V. Eppakayala, and J.-H. Kim (2013). Colloids Surf. B: Biointerfaces 102, 772–777. Scholar
  24. 24.
    T. Pirmohamed, J. M. Dowding, S. Singh, B. Wasserman, E. Heckert, A. S. Karakoti, J. E. King, S. Seal, and W. T. Self (2010). Chem. Commun. 46, 2736–2738. Scholar
  25. 25.
    G. Cheng, W. Guo, L. Han, E. Chen, L. Kong, L. Wang, W. Ai, N. Song, H. Li, and H. Chen (2013). Toxicol. In Vitro 27, 1082–1088. Scholar
  26. 26.
    A. S. Karakoti, S. Singh, A. Kumar, M. Malinska, S. V. Kuchibhatla, K. Wozniak, W. T. Self, and S. Seal (2009). J. Am. Chem. Soc. 131, 14144–14145. Scholar
  27. 27.
    Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, and Y. Chen, Adv. Mater. 21, 1275-1279. Scholar
  28. 28.
    J. Shen, M. Shi, B. Yan, H. Ma, N. Li, Y. Hu, and M. Ye (2010). Colloids Surf. B: Biointerfaces 82, 434–438. Scholar
  29. 29.
    J. Calvache-Muñoz, F. A. Prado, and J. E. Rodríguez-Páez (2017). Colloids Surf. A 529, 146–159. Scholar
  30. 30.
    S. A. Khan and A. Ahmad (2013). Mater. Res. Bull. 48, 4134–4138. Scholar
  31. 31.
    S. Chaudhary, P. Sharma, R. Kumar, and S. K. Mehta (2015). Ceram. Int. 41, 10995–11003. Scholar
  32. 32.
    D. K. Subbiah, A. J. Kulandaisamy, R. B. George, P. Shankar, G. K. Mani, K. J. Babu, and J. B. B. Rayappan (2018). J. Alloys Compd. 753, 771–780. Scholar
  33. 33.
    X. Yang, Y. Ouyang, F. Wub, Y. Hub, Y. Jib, and Z. Wu (2017). Sens. Actuators B 238, 40–47. Scholar
  34. 34.
    Z. Ji, X. Shen, J. Yang, G. Zhu, and K. Chen (2014). Appl. Catal. B Environ. 144, 454–461. Scholar
  35. 35.
    Y. H. Park, S. Y. Park, and I. In (2015). J. Ind. Eng. Chem. 30, 190–196. Scholar
  36. 36.
    M. Siriviriyanun, T. Popova, L. V. Imae, C. Y. Kiew, W. F. Looi, H. B. Lee Wong, and L. Y. Chung (2015). Chem. Eng. J. 281, 771–781. Scholar
  37. 37.
    M. J. Kishor Kumar and J. T. Kalathi (2018). J. Alloys Compd. 748, 348–354. Scholar
  38. 38.
    H. Li, C. Li, C. Jiao, and S. Wang (2015). Ceram. Int. 41, 10170–10176. Scholar
  39. 39.
    K. Krishnamoorthy, M. Veerapandian, K. Yun, and S.-J. Kim (2013). Carbon 53, 38–49. Scholar
  40. 40.
    J. Li, G. Wang, H. Zhu, M. Zhang, X. Zheng, Z. Di, X. Liu, and X. Wang (2014). Sci. Rep. 4, 4359. Scholar
  41. 41.
    S. Thakur and P. Patil (2014). Sens. Actuators B 194, 260–268. Scholar
  42. 42.
    R. Singh and S. Singh (2015). Colloids Surfaces B Biointerfaces 132, 78–84. Scholar
  43. 43.
    H. J. Byeon, Q. le Thao, S. Lee, S. Y. Min, E. S. Lee, B. S. Shin, H. G. Choi, and Y. S. Youn (2016). J. Control. Release 225, 301–313. Scholar
  44. 44.
    R. Gessner, A. Waicz, B.-R. Lieske, K. Mäder Paulke, and R. Müller (2000). Int. J. Pharm. 196, 245–249. Scholar
  45. 45.
    S. Honary and F. Z. Mazandaran (2013). Trop. J. Pharm. Res. 12, 265–273. Scholar
  46. 46.
    P. R. Sarika and N. R. James (2016). Carbohydr. Polym. 148, 354–361. Scholar
  47. 47.
    Y. Lv, L. Tao, S. W. A. Bligh, H. Yang, Q. Pan, and L. Zhu (2016). Mater. Sci. Eng. C 59, 652–660. Scholar
  48. 48.
    S. Patra, S. Mukherjee, A. K. Barui, A. Ganguly, B. Sreedhar, and C. R. Patra (2015). Mater. Sci. Eng. C 53, 298–309. Scholar
  49. 49.
    C. Elvira, A. Gallardo, J. S. Roman, and A. Cifuentes (2005). Molecules 10, 114–125. Scholar
  50. 50.
    X. Wang, C. Li, N. Fan, J. Li, Z. He, and J. Sun (2017). Mater. Sci. Eng. C 78, 370–375. Scholar
  51. 51.
    S. Bayda, M. Hadla, S. Palazzolo, V. Kumar, I. Caligiuri, E. Ambrosi, E. Pontoglio, M. Agostini, T. Tuccinardi, A. Benedetti, P. Riello, V. Canzonieri, G. Corona, G. Toffoli, and F. Rizzolio (2017). J. Control. Release 248, 144–152. Scholar
  52. 52.
    X. Zhang, L. Meng, Q. Lu, Z. Fei, and P. J. Dyson (2009). Biomaterials 30, 6041–6047. Scholar
  53. 53.
    Y. Fu and W. J. Kao (2010). Expert Opin. Drug Deliv. 7, 429–444. Scholar
  54. 54.
    K. Yang, J. Wan, S. Zhang, Y. Zhang, S.-T. Lee, and Z. Liu (2011). ACS Nano 5, 516–522. Scholar
  55. 55.
    J. M. Perez, A. Asati, S. Nath, and C. Kaittanis (2008). Small 4, 552–556. Scholar
  56. 56.
    J. Chen, H. Liu, C. Zhao, G. Qin, G. Xi, T. Li, X. Wang, and T. Chen (2014). Biomaterials 35, 4986–4995. Scholar
  57. 57.
    L. P. Franchi, B. B. Manshian, T. A. J. de Souza, S. J. Soenen, E. Y. Matsubara, J. M. Rosolen, and C. S. Takahashi (2015). Toxicol. In Vitro 29, 1319–1331. Scholar
  58. 58.
    M. S. Wason, J. Colon, S. Das, S. Seal, J. Turkson, J. Zhao, and C. H. Baker (2013). Nanomed. Nanotechnol. Biol. Med. 9, 558–569. Scholar
  59. 59.
    M. Darroudi, M. Hakimi, M. Sarani, R. K. Oskuee, A. K. Zak, and L. Gholami (2013). Ceram. Int. 39, 6917–6921. Scholar
  60. 60.
    J. Colon, N. Hsieh, A. Ferguson, P. Kupelian, S. Seal, D. W. Jenkins, and C. H. Baker (2010). Nanomed. Nanotechnol. Biol. Med. 6, 698–705. Scholar
  61. 61.
    M. S. Lord, M. S. Jung, W. Y. Teoh, C. Gunawan, J. A. Vassie, R. Amal, and J. M. Whitelock (2012). Biomaterials 33, 7915–7924. Scholar
  62. 62.
    L. D. Marzi, A. Monaco, J. D. Lapuente, D. Ramos, M. Borras, M. D. Gioacchino, S. Santucci, and A. Poma (2013). Int. J. Mol. Sci. 14, 3065–3077. Scholar
  63. 63.
    M. Pešić, A. Podolski-Renić, S. Stojković, B. Matović, D. Zmejkoski, V. Kojić, G. Bogdanović, A. Pavićević, M. Mojović, A. Savić, I. Milenković, A. Kalauzi, and K. Radotić (2015). Chem. Biol. Interact. 232, (85–93), 2015. Scholar
  64. 64.
    F. Abbas, T. Jan, J. Iqbal, and M. S. H. Naqvi (2015). Curr. Appl. Phys. 15, 1428–1434. Scholar
  65. 65.
    R. Justin, K. Tao, S. Román, D. Chen, Y. Xu, X. Geng, I. M. Ross, R. T. Grant, A. Pearson, G. Zhou, S. M. Neil, K. Sun, and B. Chen (2016). Carbon 97, 54–70. Scholar
  66. 66.
    P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, and R. Gref (2010). Nat. Mater. 9, 172–178. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryNational Institute of TechnologyRourkelaIndia
  2. 2.Department of Pharmaceutical TechnologyNSHM Knowledge CampusKolkataIndia
  3. 3.Department of Biotechnology and Medical EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations