Advertisement

TiO2/SiO2 Composite for Efficient Protection of UVA and UVB Rays Through of a Solvent-Less Synthesis

  • P. Allende
  • L. BarrientosEmail author
  • A. Orera
  • M. A. Laguna-Bercero
  • N. Salazar
  • M. L. Valenzuela
  • C. DiazEmail author
Original Paper
  • 16 Downloads

Abstract

In an effort to discover new inorganic UV absorbers, titania included into silica was prepared using a solvent-less solid state method involving the pyrolysis of the as prepared precursor Chitosan·(TiOSO4)/SiO2, as an alternative and versatile way to using these compounds for practical applications. The new TiO2/SiO2 composite was characterized by PXRD, SEM–EDS, TEM and UV–Vis absorption analysis. The SEM–EDS mapping images show a uniform distribution of TiO2 into the silica matrix. The optical properties of the composite have shown an interesting result related to high absorption of UVB rays and an improved absorption of UVA rays than pure TiO2. Efficient suppression of photocatalytic behavior of TiO2, when is incorporated into silica, was evidenced from 85 to 31%, suggesting it material as alternative inorganic UV absorber to remains the properties of the methylene blue dye. These results reveal their potential use in practical textile industry and UV protection agent to avoid human damage.

Keywords

TiO2/SiO2 composite UV absorber UV blocking property Photocatalysis 

Notes

Acknowledgements

The authors acknowledge FONDECYT Projects 1120179, 1160241 for financial support. This research has also received funding from Consejo Superior de Investigaciones Científicas, Spain under Grant I-COOP LIGHT 2015CD0013. The use of Servicio General de Apoyo a las Investigación (SAI, University of Zaragoza) is also acknowledged. LBP wants to thanks Pontificia Universidad Católica de Chile through Project 391354181 and Millennium Science Initiative of the Ministry of Economy, Development and Tourism, Chile, grant Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC) for financial support.

Supplementary material

10876_2019_1594_MOESM1_ESM.docx (524 kb)
Supplementary material 1 (DOCX 523 kb)

References

  1. 1.
    Z. Wu, Y. Xue, Z. Zou, X. Wang, and F. Gao (2017). J. Colloids Interface Sci. 490, 420.CrossRefGoogle Scholar
  2. 2.
    J. Ryu, W. Kim, J. Kim, J. Ju, and J. Kim (2017). Catal. Today 282, 24.CrossRefGoogle Scholar
  3. 3.
    P. Xiong and J. Hu (2017). Catal. Today 282, 48.CrossRefGoogle Scholar
  4. 4.
    M. J. Santillan, N. E. Quaranta, and A. R. Boccaccini (2010). Surf. Coat. Technol. 205, 2562.CrossRefGoogle Scholar
  5. 5.
    P. V. Kamat, K. Tvrdy, D. Baker, and J. Radich (2010). Chem. Rev. 110, 6664.CrossRefGoogle Scholar
  6. 6.
    A. Ayati, A. Ahmadpour, F. Bamoharram, B. Tanhaei, M. Mänttäri, and M. Sillanpää (2014). Chemosphere 107, 163.CrossRefGoogle Scholar
  7. 7.
    Y. Lee, J. Joo, Y. Yin, and F. Zaera (2016). ACS Energy Lett. 1, 52.CrossRefGoogle Scholar
  8. 8.
    B. D. Coday, B. Yaffe, P. Xu, and T. Y. Cath (2014). Environ. Sci. Technol. 48, 3612.CrossRefGoogle Scholar
  9. 9.
    C. Wang, J. Li, X. Lv, Y. Zhang, and G. Guo (2014). Energy Environ. Sci. 7, 2831.CrossRefGoogle Scholar
  10. 10.
    M. Yola, T. Eren, and N. Atar (2014). Chem. Eng. J. 250, 288.CrossRefGoogle Scholar
  11. 11.
    M. Wang, J. Ioccozia, L. Sun, C. Lin, and Z. Lin (2014). Energy Environ. Sci. 7, 2182.CrossRefGoogle Scholar
  12. 12.
    C. Xu, G. P. Rangaiah, and X. S. Zhao (2014). Ind. Eng. Chem. Res. 53, 14641.CrossRefGoogle Scholar
  13. 13.
    X. H. Yang, H. T. Fu, X. C. Wang, J. L. Yang, X. C. Jiang, and A. B. Yu (2014). J. Nanopart. Res. 16, 2526.CrossRefGoogle Scholar
  14. 14.
    B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y. De Miguel, and L. Bergström (2013). Sci. Technol. Adv. Mater. 14, 023001.CrossRefGoogle Scholar
  15. 15.
    L. Wallenhorst, L. Gurău, A. Gellerich, H. Militz, G. Ohms, and W. Viöl (2018). Appl. Surf. Sci. 434, 1183.CrossRefGoogle Scholar
  16. 16.
    M. M. Abdel-Aziz, O. A. Azim, L. A. Abdel-Wahab, and M. M. Seddik (2006). Appl. Surf. Sci. 252, 8716.CrossRefGoogle Scholar
  17. 17.
    M. Zhang, W. Xie, B. Tang, L. Sun, and X. Wang (2017). Text. Res. J. 87, 1784.CrossRefGoogle Scholar
  18. 18.
    M. Montazer and S. Morshedi (2014). J. Ind. Eng. Chem. 20, 83.CrossRefGoogle Scholar
  19. 19.
    J. Xiao, W. Chen, and F. Wang (2013). Macromolecules 46, 375.CrossRefGoogle Scholar
  20. 20.
    X. Feng, S. Zhang, and X. Lou (2013). Colloids Surf. B Biointerfaces 107, 220.CrossRefGoogle Scholar
  21. 21.
    Y. Ren, M. Chen, and Y. Zhang (2010). Langmuir 26, 11391.CrossRefGoogle Scholar
  22. 22.
    K. J. Nakamura, Y. Ide, and M. Ogawa (2011). Mater. Lett. 65, 24.CrossRefGoogle Scholar
  23. 23.
    X. Chen and S. Mao (2007). Chem. Rev. 107, 2891.CrossRefGoogle Scholar
  24. 24.
    A. Dodd, A. McKinley, T. Tsuzuki, and M. Saunders (2007). J. Phys. Chem. Solids 68, 2341.CrossRefGoogle Scholar
  25. 25.
    G. Walkers and I. P. Parkin (2009). J. Mater. Chem. 19, 574.CrossRefGoogle Scholar
  26. 26.
    M. Meilikhov, K. Yusenko, D. Esken, S. Turner, G. Van Tendoloo, and R. A. Fischer (2010). Eur. J. Inorg. Chem. 2010, 3701.CrossRefGoogle Scholar
  27. 27.
    B. Teo and X. Sun (2007). Chem. Rev. 107, 1454.CrossRefGoogle Scholar
  28. 28.
    G. B. Khomutov, V. V. Kislov, M. N. Antipirina, R. V. Gainutdinov, S. P. Gubin, A. Y. Obydenov, S. A. Pavlov, A. A. Rakhnyanskaya, A. N. Sergeev-Cherenkov, E. S. Soldatov, D. B. Suyatin, A. L. Toltikhina, A. S. Trifonov, and T. V. Yurova (2003). Microelectron. Eng. 69, 373.CrossRefGoogle Scholar
  29. 29.
    M. P. Pileni (2007). Chem. Res. 40, 685.CrossRefGoogle Scholar
  30. 30.
    M. P. Pileni (2001). J. Mater. Chem. 21, 16748.CrossRefGoogle Scholar
  31. 31.
    Y. F. Wan, N. Goubet, P. A. Albouy, and M. P. Pileni (2013). Langmuir 29, 7456.CrossRefGoogle Scholar
  32. 32.
    H. S. Nalwa Encyclopedia of Nanoscience and Nanotechnology, 1st ed (American Scientific Publishers, Valencia, 2010).Google Scholar
  33. 33.
    S. Samal, D. Kim, K. Kim, and D. Park (2012). Chem. Eng. Res. Des. 90, 1074.CrossRefGoogle Scholar
  34. 34.
    D. Fattakova-Rohlfing, A. Zaleska, and T. Bein (2014). Chem. Rev. 114, 9487.CrossRefGoogle Scholar
  35. 35.
    S. G. Kumar and K. S. Koteswara (2014). Nanoscale 5, 11574.CrossRefGoogle Scholar
  36. 36.
    S. Liu and M. Y. Han (2010). Chem. Asian J. 5, 36.Google Scholar
  37. 37.
    T. Tanski, W. Matysiak, L. Krzeminski, and P. Jarka (2017). Appl. Surf. Sci. 424, 184.CrossRefGoogle Scholar
  38. 38.
    E. Jimenez-Villar, V. Mestre, P. C. de Oliveira, and G. F. de Sá (2013). Nanoscale 5, 12512.CrossRefGoogle Scholar
  39. 39.
    C. Diaz, M. L. Valenzuela, V. Lavayen, K. Mendoza, O. Peña, and C. O’Dwyer (2011). Inorg. Chim. Acta 377, 5.CrossRefGoogle Scholar
  40. 40.
    J. H. Yoo and S. W. Lee (2014). J. Nanosci. Nanotechnol. 14, 7648.CrossRefGoogle Scholar
  41. 41.
    C. Diaz, L. Barrientos, D. Carrillo, J. Valdebenito, M. L. Valenzuela, P. Allende, H. Geaney, and C. O’Dwyer (2016). N. J. Chem. 40, 6768.CrossRefGoogle Scholar
  42. 42.
    P. Allende-González, M. A. Laguna-Bercero, L. Barrientos, M. L. Valenzuela, and C. Díaz (2018). ACS Appl. Energy Mater. 1, 3159.CrossRefGoogle Scholar
  43. 43.
    G. De, B. Karmakar, and D. Ganguli (2000). J. Mater. Chem. 10, 2289.CrossRefGoogle Scholar
  44. 44.
    Y. Kim, G. N. Shao, S. Jeon, S. M. Imran, P. B. Sarawade, and H. T. Kim (2013). Chem. Eng. J. 231, 502.CrossRefGoogle Scholar
  45. 45.
    D. Cani and P. P. Pescarmona (2014). J. Catal. 311, 404.CrossRefGoogle Scholar
  46. 46.
    Y. Wang, Z. Xing, Z. Li, G. Wang, X. Wu, and W. Zhou (2017). J. Colloid Interface Sci. 485, 32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Química, Facultad de QuímicaUniversidad de ChileSantiago de ChileChile
  2. 2.Facultad de Química y de Farmacia, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UCPontificia Universidad Católica de ChileMacul, Santiago de ChileChile
  3. 3.Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC)SantiagoChile
  4. 4.Instituto de Ciencia de Materiales de Aragón (ICMA)CSIC- Universidad de ZaragozaSaragossaSpain
  5. 5.Instituto de Ciencias Químicas Aplicadas, Inorganic Chemistry and Molecular Material CenterUniversidad Autónoma de ChileSan Miguel, Santiago de ChileChile

Personalised recommendations