Journal of Cluster Science

, Volume 30, Issue 6, pp 1501–1510 | Cite as

Bis((pyridine-2-yl)-1,2,4-triazol-5-yl) Methane as Ligand in Three Zn(II) Complexes: Synthesis, Crystal Structures and Luminescent Properties

  • Yan Cao
  • Jian-fang Liu
  • Xing-mei Qin
  • Yan Zhang
  • Hai-Ye LiEmail author
  • He-Dong Bian
  • Han-Fu Liu
  • Fu-Ping HuangEmail author
Original Paper


Reactions of the bis((pyridine-2-yl)-1,2,4-triazol-5-yl)methane (H2L) with Zn(NO3)2·6H2O and ZnCl2 conditions afforded three new Zn(II) complexes, namely, {[Zn3L′2(H2O)6]·2NO3} (1), [Zn4L2Cl4(H2O)2] (2) and [Zn6L4(CH3OH)4(NO3)4] (3). Notably in 1, the methylene group in L was in situ oxidized to a rigid ketone group in L′ (here, H2L′ = bis((pyridine-2-yl)-1,2,4-triazol-5-yl)ketone). The three Zn(II) complexes were synthesized under solvothermal conditions and characterized by techniques of Elemental analysis, Fourier transform infrared spectroscopy, Powder X-ray diffraction and single-crystal X-ray diffraction analysis. In addition, the thermogravimetric properties and the luminescent properties of 13 were investigated.


Clusters Methylene group In situ oxidation Luminescent properties 



We gratefully acknowledge the National Nature Science Foundation of China (21861005), the Guangxi Natural Science Foundation of China (2016GXNSFFA380010), the Foundation of Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (CMEMR2015-A11, CMEMR2016-A11).

Compliance with Ethical Standards

Conflict of interest

No potential conflict of interest was reported by the authors.

Supplementary material

10876_2019_1593_MOESM1_ESM.cif (19 kb)
Supplementary material 1 (CIF 19 kb)
10876_2019_1593_MOESM2_ESM.cif (21 kb)
Supplementary material 2 (CIF 20 kb)
10876_2019_1593_MOESM3_ESM.cif (595 kb)
Supplementary material 3 (CIF 595 kb)
10876_2019_1593_MOESM4_ESM.pdf (180 kb)
Supplementary material 4 (PDF 180 kb)
10876_2019_1593_MOESM5_ESM.pdf (141 kb)
Supplementary material 5 (PDF 140 kb)
10876_2019_1593_MOESM6_ESM.pdf (234 kb)
Supplementary material 6 (PDF 234 kb)


  1. 1.
    K. Griffiths and G. E. Kostakis (2018). Dalton Trans. 47, 12011.CrossRefGoogle Scholar
  2. 2.
    P. Buchwalter, J. Rosé, and P. Braunstein (2015). Chem. Rev. 115, 28.CrossRefGoogle Scholar
  3. 3.
    S. Ahmed, M. A. Mansoor, M. Mazhar, T. Söhnel, H. Khaledi, W. J. Basirun, Z. Arifin, S. Abubakar, and B. Muhammad (2014). Dalton Trans. 43, 8523.CrossRefGoogle Scholar
  4. 4.
    P. Buchwalter, J. Rosé, and P. Braunstein (2015). Chem. Rev. 115, 28.CrossRefGoogle Scholar
  5. 5.
    I. Chakraborty and T. Pradeep (2017). Chem. Rev. 117, 8208.CrossRefGoogle Scholar
  6. 6.
    X. Y. Zheng, X. J. Kong, Z. Zheng, L. S. Long, and L. S. Zheng (2018). Acc. Chem. Res. 51, 517.CrossRefGoogle Scholar
  7. 7.
    W. Q. Lin, Y. Y. Peng, L. Tong, J. H. Jia, J. L. Liu, Y. C. Chen, W. B. Chen, and M. L. Tong (2017). Chem Asian J. 12, 2172.CrossRefGoogle Scholar
  8. 8.
    S. B. Meshkova, A. V. Kiriyak, A. N. Gusev, G. A. Nischimenko, and V. F. Shul’gin (2012). J. Appl. Spectrosc. 79, 708.CrossRefGoogle Scholar
  9. 9.
    C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, and P. A. Wood (2008). J. Appl. Crystallogr. 41, 466.CrossRefGoogle Scholar
  10. 10.
    G. M. Sheldrick (2008). Acta Cryst A. 64, 112.CrossRefGoogle Scholar
  11. 11.
    G. M. Sheldrick (2015). Acta Cryst. C. 71, 3.CrossRefGoogle Scholar
  12. 12.
    X. Pang, J. Liu, G. Wei, D. Shi, H. Bian, H. Liu, D. Yao, H. Li, and F. Huang (2018). ChemistrySelect 3, 7830.CrossRefGoogle Scholar
  13. 13.
    J. E. V. Babb, A. D. Burrows, R. W. Harrington, and M. F. Mahon (2003). Polyhedron 22, 673.CrossRefGoogle Scholar
  14. 14.
    X. Zhang, X. Zhuang, N. Zhang, C. Ge, X. Luo, J. Li, J. Wu, Q. Yang, and R. Liu (2019). CrystEngComm 21, 1948.CrossRefGoogle Scholar
  15. 15.
    M. Q. He, Y. Xu, M. X. Li, M. Shao, and Z. X. Wang (2019). Cryst. Growth Des. 19, 2892.CrossRefGoogle Scholar
  16. 16.
    Y. Pan, J. Wang, X. Guo, X. Liu, X. Tang, and H. Zhang (2018). J. Colloid Interface Sci. 513, 418.CrossRefGoogle Scholar
  17. 17.
    P. Wang, R. Q. Fan, X. R. Liu, L. Y. Wang, Y. L. Yang, W. W. Cao, B. Yang, W. Hasi, Q. Su, and Y. Mu (2013). CrystEngComm 15, 1931.CrossRefGoogle Scholar
  18. 18.
    Y. Y. Liu, Y. Q. Huang, W. Shi, P. Cheng, D. Z. Liao, and S. P. Yan (2007). Cryst. Growth Des. 7, 1483.CrossRefGoogle Scholar
  19. 19.
    D. Zhao, X. H. Liu, Y. Zhao, P. Wang, Y. Liu, M. Azam, S. I. Al-Resayes, Y. Lu, and W. Y. Sun (2017). J. Mater. Chem. A 5, 15797.CrossRefGoogle Scholar
  20. 20.
    A. N. Gusev, V. F. Shul’gin, G. A. Nishchimenko, S. B. Meshkova, A. V. Kiriyak, G. G. Aleksandrov, and I. L. Eremenko (2013). Russ. J. Coord. Chem. 39, 432.CrossRefGoogle Scholar
  21. 21.
    D. K. Maity, A. Dey, S. Ghosh, A. Halder, P. P. Ray, and D. Ghoshal (2018). Inorg. Chem. 57, 251.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yan Cao
    • 1
  • Jian-fang Liu
    • 1
  • Xing-mei Qin
    • 1
  • Yan Zhang
    • 1
  • Hai-Ye Li
    • 2
    Email author
  • He-Dong Bian
    • 1
  • Han-Fu Liu
    • 1
  • Fu-Ping Huang
    • 1
    Email author
  1. 1.State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal UniversityGuilinPeople’s Republic of China
  2. 2.School of Chemistry and PharmacyGuangxi Normal UniversityGuilinPeople’s Republic of China

Personalised recommendations