Journal of Cluster Science

, Volume 30, Issue 6, pp 1393–1402 | Cite as

Novel and Facile Synthesis of Sea Anemone Adhesive Protein-Coated ZnO Nanoparticles: Antioxidant, Antibiofilm, and Mosquito Larvicidal Activity Against Aedes aegypti

  • Muthukumar Abinaya
  • Ravichandran Rekha
  • Shanthini Sivakumar
  • Marimuthu Govindarajan
  • Naiyf S. Alharbi
  • Shine Kadaikunnan
  • Jamal M. Khaled
  • Ahmed S. Alobaidi
  • Mohammed N. Al-Anbr
  • Baskaralingam VaseeharanEmail author


Recently, marine bio-products have provided a new insight on biomaterials for pharmaceutical applications. Herein, the use of adhesive protein in the fabrication of bio-inspired nanomaterials noted to the possible realization of vital biomedical applications. This study illustrates the biosynthesize ZnO nanoparticles (ZnO NPs) using adhesive protein from sea anemone Stichodactyla haddoni (ShAp). ShAp-ZnO NPs were characterized via SDS-PAGE, UV–Visible, XRD, FTIR, TEM and SAED. The molecular weight of the adhesive protein was determined by SDS-PAGE to be between 36 and 42 kDa. The UV–Vis peak of ShAp-ZnO NPs was revealed at 210 nm while XRD exhibited the crystalline nature of ShAp-ZnO NPs. FTIR revealed that functional group of ShAp-ZnO NPs, which exhibited peaks at 3441.31–1073.36 cm−1. HR-TEM revealed that ShAp-ZnO NPs obtained structure were hexagonal with 10 nm diameter. The antioxidant properties of ShAp, zinc acetate, and ShAp-ZnO NPs were noted at 100 µg/mL. Further, microscopic analysis demonstrated that 50 µg/mL of ShAp, zinc acetate, and ShAp-ZnO NPs efficiently repressed the biofilm formation of both Gram(+) and Gram(−) bacteria. In addition, maximal larvicidal effects were noticed at 100 µg/mL of ShAp-ZnO NPs against the 3rd instar of Aedes aegypti. Overall, the ShAp-ZnO NPs could have entomological and pharmaceutical applications.


Stichodactyla haddoni Adhesive protein Antibiofilm Antioxidant Insecticide 



The authors appreciatively acknowledge the financial support of RUSA-Phase 2.0-F.24-51/2014-U (TN Multi-Gen), Dept. of Edn, Govt of India. MA gratitude the support of DST-INSPIRE fellowship-IF160623, New Delhi, India. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No. RG-1438-074. The authors thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    G. Barresi, E. Di Carlo, M. R. Trapani, M. G. Parisi, C. Chille, M. F. Mule, M. Cammarata, and F. Palla (2015). Herit. Sci. 3, 2–4.CrossRefGoogle Scholar
  2. 2.
    Y. Shimizu (1985). J. Nat. Prod. 48, 223–235.CrossRefGoogle Scholar
  3. 3.
    P. Devi, S. Wahidullah, T. Kamat, and L. D. Souza (2011). Indian J. Geo Mar. Sci. 40, 338–346.Google Scholar
  4. 4.
    D. Krishnaiah, R. Sarbatly, and A. Bono (2007). Biotechnol. Mol Biol. Rev. 1, 97–104.Google Scholar
  5. 5.
    R. E. Baier (2015). J. Surf. Eng. Mater. Adv. Technol. 5, 42–51.Google Scholar
  6. 6.
    Q. Lin, D. Gourdon, C. Sun, N. Holten-Andersen, T. H. Anderson, J. H. Waite, and J. N. Israelachvili (2007). Proc. Natl. Acad. Sci. USA 104, 3782–3786.CrossRefGoogle Scholar
  7. 7.
    G. Anderluh and P. Macek (2002). Toxicon 40, 111–124.CrossRefGoogle Scholar
  8. 8.
    T. Turk (1991). J. Toxicol. Toxin. Rev. 10, 223–262.CrossRefGoogle Scholar
  9. 9.
    W. R. Kem, M. W. Pennington, and R. S. Norton (1999). Perspect. Drug Discov. Des. 15, 111–129.CrossRefGoogle Scholar
  10. 10.
    L. Beress (1982). Pure Appl. Chem. 54, 1981–1994.CrossRefGoogle Scholar
  11. 11.
    H. Lee, D. S. Um, Y. Lee, S. Lim, H. Kim, and H. Ko (2016). Adv. Mater. 28, 7457–7465.CrossRefGoogle Scholar
  12. 12.
    S. Thangaraj and S. Bragadeeswaran (2012). J. Venom. Anim. Toxins Incl. Trop. Dis. 18, 53–61.Google Scholar
  13. 13.
    J. Rocha, L. Peixe, N. C. M. Gomes, and R. Calado (2011). Mar. Drugs 9, 1860–1886.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    G. P. Williams, S. Babu, S. Ravikumar, K. Kathiresan, S. A. Arul Prathao, and S. Chinnappa raj (2007). J. Environ. Biol. 28, 782–793.Google Scholar
  15. 15.
    S. Nazar, S. Ravikumar, G. P. Williams, M. S. Ali, and P. Suganthi (2009). Ind. J. Sci. Technol. 2, 24–27.Google Scholar
  16. 16.
    G. Benelli and J. C. Beier (2017). Acta Trop. 174, 91–96.CrossRefGoogle Scholar
  17. 17.
    G. Benelli and M. F. Duggan (2018). Acta Trop. 182, 80–91.CrossRefGoogle Scholar
  18. 18.
    M. Govindarajan, S. L. Hoti, M. Rajeswary, and G. Benelli (2016). Parasitol. Res. 115, 2685–2695.CrossRefGoogle Scholar
  19. 19.
    M. Govindarajan, M. Rajeswary, and G. Benelli (2016). Ecotoxicol. Environ. Saf. 129, 85–90.CrossRefGoogle Scholar
  20. 20.
    G. Benelli, F. Maggi, R. Pavela, K. Murugan, M. Govindarajan, B. Vaseeharan, R. Petrelli, L. Cappellacci, S. Kumar, A. Hofer, M. R. Youssefi, A. A. Alarfaj, J. S. Hwang, and A. Higuchi (2018). Environ. Sci. Pollut. Res. 25, 10184–10206.CrossRefGoogle Scholar
  21. 21.
    M. Govindarajan (2011). Parasitol. Res. 109, 93–103.CrossRefGoogle Scholar
  22. 22.
    R. Pavela, F. Maggi, R. Iannarelli, and G. Benelli (2019). Acta Trop.. (in press).CrossRefPubMedGoogle Scholar
  23. 23.
    M. Govindarajan, M. Rajeswary, U. Muthukumaran, S. L. Hoti, H. F. Khater, and G. Benelli (2016). J. Photochem. Photobiol. B 161, 482–489.CrossRefGoogle Scholar
  24. 24.
    M. Govindarajan, H. F. Khater, C. Panneerselvam, and G. Benelli (2016). Res. Vet. Sci. 107, 95–101.CrossRefGoogle Scholar
  25. 25.
    G. Benelli (2018). Acta Trop. 178, 73–80.CrossRefGoogle Scholar
  26. 26.
    R. Pavela and M. Govindarajan (2017). J. Pest Sci. 90, 369–378.CrossRefGoogle Scholar
  27. 27.
    H. Abdul, R. Sivaraj, and R. Venckatesh (2014). Mater. Lett. 131, 16–18.CrossRefGoogle Scholar
  28. 28.
    H. Mirzaei and M. Darroudi (2017). Ceram. Int. 43, 907–914.CrossRefGoogle Scholar
  29. 29.
    M. Darroudi, M. Hakimi, M. Sarani, R. KazemiOskuee, A. K. Zak, and L. Gholami (2013). Ceram. Int. 39, 6917–6921.CrossRefGoogle Scholar
  30. 30.
    A. K. Zak, W. H. A. Majid, M. R. Mahmoudian, M. Darroudi, and R. Yousefi (2013). Adv. Powder Technol. 24, 618–624.CrossRefGoogle Scholar
  31. 31.
    S. Gunalan, R. Sivaraj, and V. Rajendran (2012). Proc. Natl. Sci. Mater. 22, 693–700.CrossRefGoogle Scholar
  32. 32.
    S. Stankic, S. Suman, F. Haque, and J. Vidic (2016). J. Nanobiotechnol. 14, 73.CrossRefGoogle Scholar
  33. 33.
    S. Tabrez, J. Musarrat, and A. A. Al-khedhairy (2016). Colloids Surf. B Biointerfaces 146, 70–83.CrossRefGoogle Scholar
  34. 34.
    B. Knoll and F. Keilmann (1999). Nature 399, 134–137.CrossRefGoogle Scholar
  35. 35.
    L. M. Liz-Marzán, M. Giersig, and P. Mulvaney (1996). Langmuir 12, 4329–4335.CrossRefGoogle Scholar
  36. 36.
    N. Padmavathy and R. Vijaya Raghavan (2008). Sci. Technol. Adv. Mater. 9, 7.CrossRefGoogle Scholar
  37. 37.
    G. Applerot, J. Lellouche, N. Perkas, Y. Nitzan, A. Gedanken, and E. Banin (2012). RSC Adv. 2, 2314–2321.CrossRefGoogle Scholar
  38. 38.
    J. Fowsiya, G. Madhumitha, N. A. Al-Dhabi, and M. V. Arasu (2016). J. Photochem. Photobiol. 162, 395–401.CrossRefGoogle Scholar
  39. 39.
    R. Dobrucka and J. Długaszewska (2016). Saudi J. Biol. Sci. 23, 517–523.CrossRefGoogle Scholar
  40. 40.
    L. Stabili, R. Schirosi, M. G. Parisi, S. Piraino, and M. Cammarata (2015). Mar. Drugs 13, 5276–5296.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    U. K. Laemmli (1970). Nature 227, 680–685.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    O. H. Lowry, N. L. Rosebrough, A. L. Farr, and R. J. Randall (1951). J. Biol. Chem. 193, 265–275.Google Scholar
  43. 43.
    A. Iswarya, B. Vaseeharan, M. Anjugam, B. Ashokkumar, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). Colloids Surf. B Biointerfaces 158, 257–269.CrossRefGoogle Scholar
  44. 44.
    S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, and M. Shobiya (2016). Biomed. Pharmacother. 84, 1213–1222.CrossRefGoogle Scholar
  45. 45.
    D. Das, B. C. Nath, P. Phukon, A. Kalita, and S. K. Dolui (2013). Colloids Surf. B Biointerfaces 111, 556–560.CrossRefGoogle Scholar
  46. 46.
    H. Qi, Q. Zhang, T. Zhao, R. Hu, K. Zhang, and Z. Li (2006). Bioorg. Med. Chem. Lett. 16, 2441–2445.CrossRefGoogle Scholar
  47. 47.
    A. Thirunarayanan, S. Raja, G. Mohanraj, and P. Rajakumar (2014). RSC Adv. 4, 41778–41783.CrossRefGoogle Scholar
  48. 48.
    M. Anjugam, A. Iswarya, and B. Vaseeharan (2016). Fish Shellfish Immunol. 48, 196–205.CrossRefGoogle Scholar
  49. 49.
    R. Ishwarya, B. Vaseeharan, R. Anuradha, R. Rekha, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Photochem. Photobiol. B: Biol. 174, 133–143.CrossRefGoogle Scholar
  50. 50.
    M. Govindarajan and G. Benelli (2016). J. Parasitol. Res. 115, 4649–4661.CrossRefGoogle Scholar
  51. 51.
    World Health Organization, Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. (WHO/HTM/NTD/DEN/2009.1, 2009).Google Scholar
  52. 52.
    D. Dhanasekaran and R. Thangaraj (2013). Asian Pac. J. Trop. Dis. 3, 174–179.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    K. X. Yu, C. L. Wong, R. Ahmad, and I. Jantan (2015). Asian Pac. J. Trop. Dis. 8, 1006–1012.CrossRefGoogle Scholar
  54. 54.
    J. Sánchez-Rodríguez and K. Cruz-Vazquez (2006). Arch. Toxicol. 80, 436–441.CrossRefGoogle Scholar
  55. 55.
    G. I. Uechi, H. Toma, T. Arakawa, and Y. Sato (2005). Toxicology 45, 761–766.Google Scholar
  56. 56.
    A. W. Bernheimer and L. S. Avigad (1978). Biochim. Biophys. Acta 541, 96–106.CrossRefGoogle Scholar
  57. 57.
    M. M. Monastyrnaya, T. A. Zykova, O. V. Apalikova, T. V. Shwets, and E. P. Kozlovskaya (2002). Toxicology 40, 1197–1217.Google Scholar
  58. 58.
    S. C. Singh, R. K. Swarnkar, and R. Gopal (2010). Bull. Mater. Sci. 33, 21–26.CrossRefGoogle Scholar
  59. 59.
    R. Ishwarya, B. Vaseeharan, R. Anuradha, R. Rekha, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2018). J. Photochem. Photobiol. 178, 249–258.CrossRefGoogle Scholar
  60. 60.
    S. Vijayakumar, G. Vinoj, B. Malaikozhundan, S. Shanthi, and B. Vaseeharan (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 886–891.CrossRefGoogle Scholar
  61. 61.
    M. Abinaya, B. Vaseeharana, M. Divya, A. Sharmili, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2018). J. Trace Elem. Med. Biol. 45, 93–103.CrossRefGoogle Scholar
  62. 62.
    T. Shanmugasundaram and R. Balagurunathan (2016). Artif. Cells Nanomed. Biotechnol.. Scholar
  63. 63.
    T. W. Stief (2003). Med. Hypotheses 60, 567–572.CrossRefGoogle Scholar
  64. 64.
    S. Sureshkumar, J. A. Christopher, and S. Ravikumar (2002). Seaweed Res. Util. 24, 111–115.Google Scholar
  65. 65.
    S. Thangaraj, S. Bragadeeswaran, K. Suganthi, and N. S. Kumaran (2011). Asian Pac. J. Trop. Biomed. 1, S43–S46.CrossRefGoogle Scholar
  66. 66.
    B. Subramanian, T. Sangappellai, R. C. Rajak, and B. Diraviam (2011). Asian Pac. J. Trop. Biomed. 4, 722–726.CrossRefGoogle Scholar
  67. 67.
    B. Banumathi, B. Vaseeharan, R. Ishwarya, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). Parasitol. Res. 116, 1637–1651.CrossRefGoogle Scholar
  68. 68.
    P. K. Stoimenov, R. L. Klinger, G. L. Marchin, and K. J. Klabunde (2002). Langmuir 18, 6679–6686.CrossRefGoogle Scholar
  69. 69.
    L. L. Zhang, Y. H. Jiang, Y. L. Ding, N. Daskalakis, L. Jeuken, M. Povey, A. J. O. Neill, and D. W. Yorks (2010). J. Nanopart. Res. 12, 1625–1636.CrossRefGoogle Scholar
  70. 70.
    P. Suganya, B. Vaseeharan, S. Vijayakumar, B. Balan, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Photochem. Photobiol. 173, 404–411.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Muthukumar Abinaya
    • 1
  • Ravichandran Rekha
    • 1
  • Shanthini Sivakumar
    • 2
  • Marimuthu Govindarajan
    • 3
    • 4
  • Naiyf S. Alharbi
    • 5
  • Shine Kadaikunnan
    • 5
  • Jamal M. Khaled
    • 5
  • Ahmed S. Alobaidi
    • 5
  • Mohammed N. Al-Anbr
    • 5
  • Baskaralingam Vaseeharan
    • 1
    Email author
  1. 1.Nano Biosciences and Nano Pharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and ManagementAlagappa UniversityKaraikudiIndia
  2. 2.Centre for Animal Science Research and Extension ServicesFoundation for Innovative Research in Science and TechnologyNagercoilIndia
  3. 3.Unit of Vector Control, Phytochemistry and Nanotechnology, Department of ZoologyAnnamalai UniversityAnnamalainagarIndia
  4. 4.Department of ZoologyGovernment College for Women (Autonomous)KumbakonamIndia
  5. 5.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations