Nickel Oxide Nanoparticles Supported on Graphitized Carbon for Ethanol Oxidation in NaOH Solution

  • R. M. Abdel HameedEmail author
Original Paper


NiO nanoparticles were deposited on graphitized carbon support [NiO/G-C] through precipitating nickel hydroxide species followed by calcination at 400 °C. Physicochemical characterization indicated the appearance of two diffraction planes at 2θ values of 43.22° and 62.84° in XRD pattern of NiO/G-C to confirm the nickel oxide species formation. HRTEM image showed a finger print of deposited nanoparticles with lattice fringes distance of 0.152 nm that resembled the lattice distance of NiO(220) plane. The electrocatalytic performance of NiO/G-C electrocatalysts towards oxidizing ethanol molecules was examined in basic solution using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The oxidation current density of NiO/G-C electrocatalyst was dependent on the loading amount of nickel oxide species. The effect of varying ethanol concentration and scan rate during ethanol oxidation reaction was studied. The reaction order with respect to ethanol concentration was measured in the range of 0.260–0.572 at NiO/G-C electrocatalysts containing variable nickel oxide content. Double-step chronoamperometry was employed to calculate the catalytic rate constant and diffusion coefficient values. They were 8.153 × 102 cm3 mol−1 s−1 and 1.424 × 10−7 cm2 s−1, respectively. A lower charge transfer resistance value was obtained after adding ethanol molecules to NaOH solution confirming the enhanced electrocatalytic activity of NiO/G-C during alcohol oxidation process.


Ethanol molecules Electrocatalyst Alkaline solution Nickel oxide Graphitized carbon support 


Supplementary material

10876_2019_1560_MOESM1_ESM.pdf (452 kb)
Supplementary material 1 (PDF 452 kb)


  1. 1.
    M. Winter and R. J. Brodd (2004). What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, (10), 4245–4270.Google Scholar
  2. 2.
    A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. Van Schalkwijk (2005). Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377.Google Scholar
  3. 3.
    C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, and J.-M. Léger (2002). Recent advances in the development of direct alcohol fuel cells (DAFC). J. Power Sources 105, (2), 283–296.Google Scholar
  4. 4.
    C. Lamy, S. Rousseau, E. M. Belgsir, C. Coutanceau, and J.-M. Léger (2004). Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim. Acta 49, (22–23), 3901–3908.Google Scholar
  5. 5.
    E. Antolini (2007). Catalysts for direct ethanol fuel cells. J. Power Sources 170, (1), 1–12.Google Scholar
  6. 6.
    F. Dong, Z. Li, S. Wang, L. Xu, and X. Yu (2011). Preparation and properties of sulfonated poly(phthalazinone ether sulfone ketone)/zirconium sulfophenylphosphate/PTFE composite membranes. Int. J. Hydrogen Energy 36, (5), 3681–3687.Google Scholar
  7. 7.
    J. Tayal, B. Rawat, and S. Basu (2012). Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell. Int. J. Hydrogen Energy 37, (5), 4597–4605.Google Scholar
  8. 8.
    S. Y. Shen, T. S. Zhao, and Q. X. Wu (2012). Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment. Int. J. Hydrogen Energy 37, (1), 575–582.Google Scholar
  9. 9.
    J. W. Gosselink (2002). Pathways to a more sustainable production of energy: sustainable hydrogen—a research objective for Shell. Int. J. Hydrogen Energy 27, (11–12), 1125–1129.Google Scholar
  10. 10.
    H. Khani, M. K. Rofouei, P. Arab, V. K. Gupta, and Z. Vafaei (2010). Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II). J. Hazardous Mater. 183, (1–3), 402–409.Google Scholar
  11. 11.
    T. A. Saleh and V. K. Gupta (2011). Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J. Colloid Interface Sci. 362, (2), 337–344.Google Scholar
  12. 12.
    N. Mohammadi, H. Khani, V. K. Gupta, E. Amereh, and S. Agarwal (2011). Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies. J. Colloid Interface Sci. 362, (2), 457–462.Google Scholar
  13. 13.
    T. A. Saleh and V. K. Gupta (2012). Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J. Colloid Interface Sci. 371, (1), 101–106.Google Scholar
  14. 14.
    V. K. Gupta, I. Ali, T. A. Saleh, M. N. Siddiqui, and S. Agarwal (2013). Chromium removal from water by activated carbon developed from waste rubber tires. Environ. Sci. Pollut. Res. 20, (3), 1261–1268.Google Scholar
  15. 15.
    V. K. Gupta and T. A. Saleh (2013). Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- An overview. Environ. Sci. Pollut. Res. 20, (5), 2828–2843.Google Scholar
  16. 16.
    V. K. Gupta, A. Nayak, S. Agarwal, and I. Tyagi (2014). Potential of activated carbon from waste rubber tire for the adsorption of phenolics: Effect of pre-treatment conditions. J. Colloid Interface Sci. 417, 420–430.Google Scholar
  17. 17.
    V. K. Gupta, N. Atar, M. L. Yola, Z. Üstündağ, and L. Uzun (2014). A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 48, 210–217.Google Scholar
  18. 18.
    T. A. Saleh and V. K. Gupta (2014). Processing methods, characteristics and adsorption behavior of tire derived carbons: A review. Advances in Colloid and Interface Science 211, 93–101.Google Scholar
  19. 19.
    A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, and V. K. Gupta (2015). Removal of basic dye auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv. 5, (24), 18438–18450.Google Scholar
  20. 20.
    V. K. Gupta, Suhas, I. Tyagi, S. Agarwal, R. Singh, M. Chaudhary, A. Harit, and S. Kushwaha (2016). Column operation studies for the removal of dyes and phenols using a low cost adsorbent. Global J Environ Sci Manag 2, (1), 1–10.Google Scholar
  21. 21.
    C. Zhu, J. Zhai, D. Wen, and S. Dong (2012). Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J. Mater. Chem. 22, (13), 6300–6306.Google Scholar
  22. 22.
    J.-D. Qiu, L. Shi, R.-P. Liang, G.-C. Wang, and X.-H. Xia (2012). Controllable deposition of a platinum nanoparticle ensemble on a polyaniline/graphene hybrid as a novel electrode material for electrochemical sensing. Chem. Eur. J. 18, (25), 7950–7959.Google Scholar
  23. 23.
    Z.-B. Wang, G.-P. Yin, J. Zhang, Y.-C. Sun, and P.-F. Shi (2006). Investigation of ethanol electrooxidation on a Pt-Ru-Ni/C catalyst for a direct ethanol fuel cell. J. Power Sources 160, (1), 37–43.Google Scholar
  24. 24.
    D. He, L. Yang, S. Kuang, and Q. Cai (2007). Fabrication and catalytic properties of Pt and Ru decorated TiO2/CNTs catalyst for methanol electrooxidation. Electrochem. Commun. 9, (10), 2467–2472.Google Scholar
  25. 25.
    M. Ammam and E. B. Easton (2013). PtCu/C and Pt(Cu)/C catalysts: Synthesis, characterization and catalytic activity towards ethanol electrooxidation. J. Power Sources 222, 79–87.Google Scholar
  26. 26.
    J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, and F. Wei (2010). Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48, (2), 487–493.Google Scholar
  27. 27.
    X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M. B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, and P. Chen (2012). 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6, (4), 3206–3213.Google Scholar
  28. 28.
    G. Wang, J. Liu, S. Tang, H. Li, and D. Cao (2011). Cobalt oxide–graphene nanocomposite as anode materials for lithium-ion batteries. J. Solid State Electrochem. 15, (11), 2587–2592.Google Scholar
  29. 29.
    M. Zhang, Z. Yan, and J. Xie (2012). Core/shell Ni@Pd nanoparticles supported on MWCNTs at improved electrocatalytic performance for alcohol oxidation in alkaline media. Electrochim. Acta 77, 237–243.Google Scholar
  30. 30.
    L. S. Parreira, J. C. M. da Silva, M. D’Villa-Silva, F. C. Simões, S. Garcia, I. Gaubeur, M. A. L. Cordeiro, E. R. Leite, and M. C. dos Santos (2013). PtSnNi/C nanoparticle electrocatalysts for the ethanol oxidation reaction: Ni stability study. Electrochim. Acta 96, 243–252.Google Scholar
  31. 31.
    B. Habibi and E. Dadashpour (2013). Carbon-ceramic supported bimetallic Pt–Ni nanoparticles as an electrocatalyst for electrooxidation of methanol and ethanol in acidic media. Int. J. Hydrogen Energy 38, (13), 5425–5434.Google Scholar
  32. 32.
    X. Pang, D. He, S. Luo, and Q. Cai (2009). An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sens. Actuat. B: Chem. 137, (1), 134–138.Google Scholar
  33. 33.
    A. A. Ensafi, A. R. Allafchian, B. Rezaei, and R. Mohammadzadeh (2013). Characterization of carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles as a novel electrochemical sensor: Application for highly selective determination of sotalol using voltammetry. Mater. Sci. Eng. C 33, (1), 202–208.Google Scholar
  34. 34.
    A. A. Ensafi and A. R. Allafchian (2013). Multiwall carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles, a new catalyst for voltammetric determination of cefixime. Colloids Surfaces B: Biointerfaces 102, 687–693.Google Scholar
  35. 35.
    V. K. Gupta, R. Jain, A. Nayak, S. Agarwal, and M. Shrivastava (2011). Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface. Mater. Sci. Eng. C 31, (5), 1062–1067.Google Scholar
  36. 36.
    T. A. Saleh and V. K. Gupta (2012). Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep. Purif. Technol. 89, 245–251.Google Scholar
  37. 37.
    R. Saravanan, E. Thirumal, V. K. Gupta, V. Narayanan, and A. Stephen (2013). The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J. Mol. Liq. 177, 394–401.Google Scholar
  38. 38.
    R. Saravanan, V. K. Gupta, T. Prakash, V. Narayanan, and A. Stephen (2013). Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. J. Mol. Liq. 178, 88–93.Google Scholar
  39. 39.
    R. Saravanan, V. K. Gupta, V. Narayanan, and A. Stephen (2013). Comparative study on photocatalytic activity of ZnO prepared by different methods. J. Mol. Liq. 181, 133–141.Google Scholar
  40. 40.
    R. Sarayanan, S. Karthikeyan, V. K. Gupta, G. Sekaran, V. Narayanan, and A. Stephen (2013). Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater. Sci. Eng. C. 33, (1), 91–98.Google Scholar
  41. 41.
    R. Saravanan, S. Joicy, V. K. Gupta, V. Narayanan, and A. Stephen (2013). Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater. Sci. Eng.: C 33, (8), 4725–4731.Google Scholar
  42. 42.
    R. Saravanan, N. Karthikeyan, V. K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, and A. Stephen (2013). ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light. Mater. Sci. Eng. C 33, (4), 2235–2244.Google Scholar
  43. 43.
    R. Saravanan, V. K. Gupta, E. Mosquera, and F. Gracia (2014). Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J. Mol. Liq. 198, 409–412.Google Scholar
  44. 44.
    R. Saravanan, V. K. Gupta, V. Narayanan, and A. Stephen (2014). Visible light degradation of textile effluent using novel catalyst ZnO/γ-Mn2O3. J. Taiwan Inst. Chem. Eng. 45, (4), 1910–1917.Google Scholar
  45. 45.
    R. Saravanan, M. M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen (2015). ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Adv. 5, (44), 34645–34651.Google Scholar
  46. 46.
    S. Haijati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, and V. K. Gupta (2015). Modeling of competitive ultrasonic assisted removal of the dyes—methylene blue and Safranin-O using Fe3O4 nanoparticles. Chem. Eng. J. 268, 28–37.Google Scholar
  47. 47.
    R. Saravanan, M. M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen (2015). ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J. Colloid Interface Sci. 452, 126–133.Google Scholar
  48. 48.
    M. Devaraj, R. Saravanan, R. K. Deivasigamani, V. K. Gupta, F. Gracia, and S. Jayadevan (2016). Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J. Mol. Liq. 221, 930–941.Google Scholar
  49. 49.
    R. Saravanan, E. Sacari, F. Gracia, M. M. Khan, E. Mosquera, and V. K. Gupta (2016). Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J. Mol. Liq. 221, 1029–1033.Google Scholar
  50. 50.
    R. Saravanan, M. M. Khan, F. Gracia, J. Qin, V. K. Gupta, and A. Stephen (2016). Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci. Rep. 6, 31641.Google Scholar
  51. 51.
    A. M. Al-Enizi, M. A. Ghanem, A. A. El-Zatahry, and S. S. Al-Deyab (2014). Nickel oxide/nitrogen doped carbon nanofibers catalyst for methanol oxidation in alkaline media. Electrochim. Acta 137, 774–780.Google Scholar
  52. 52.
    R. M. Abdel Hameed and S. S. Medany (2018). Influence of support material on the electrocatalytic activity of nickel oxide nanoparticles for urea electro-oxidation reaction. J. Colloid Interface Sci. 513, 536–548.Google Scholar
  53. 53.
    M. Chu, L. Wang, X. Li, M. Hou, N. Li, Y. Dong, X. Li, Z. Xie, Y. Lin, W. Cai, and C. Zhang (2018). Carbon coated nickel-nickel oxide composites as a highly efficient catalyst for hydrogen evolution reaction in acid medium. Electrochim. Acta 264, 284–291.Google Scholar
  54. 54.
    C. Xia, X. Yanjun, and W. Ning (2011). Facile synthesis of NiO nanoflowers and their electrocatalytic performance. Sens. Actuat. B: Chem. 153, (2), 434–438.Google Scholar
  55. 55.
    H. Karimi-Maleh, M. Moazampour, V. K. Gupta, and A. L. Sanati (2014). Electrocatalytic determination of captopril in real samples using NiO nanoparticle modified (9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-4-ethylbenzene-1,2-diol carbon paste electrode. Sens. Actuat. B: Chem. 199, 47–53.Google Scholar
  56. 56.
    D. Zhang, X. Zhou, K. Ye, Y. Li, C. Song, K. Cheng, D. Cao, G. Wang, and Q. Li (2015). Synthesis of honeycomb-like NiS2/NiO nano-multiple materials for high performance supercapacitors. Electrochim. Acta 173, 209–214.Google Scholar
  57. 57.
    Z. Li, L. Zhang, C. Yang, J. Chen, and P. Shen (2019). Graphitized carbon nanocages/palladium nanoparticles: Sustainable preparation and electrocatalytic performances towards ethanol oxidation reaction. Int. J. Hydrogen Energy 44, (12), 6172–6181.Google Scholar
  58. 58.
    Y. Devrim and E. D. Arica (2019). Investigation of the effect of graphitized carbon nanotube catalyst support for high temperature PEM fuel cells. Int. J. Hydrogen Energy. Scholar
  59. 59.
    T. Sadhasivam, S.-H. Roh, T.-H. Kim, K.-W. Park, and H.-Y. Jung (2016). Graphitized carbon as an efficient mesoporous layer for unitized regenerative fuel cells. Int. J. Hydrogen Energy 41, (40), 18226–18230.Google Scholar
  60. 60.
    X. Wu, X. Yu, Z. Lin, J. Huang, and Y. Zhang (2016). Nitrogen doped graphitic carbon ribbons from cellulose as non noble metal catalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 41, (32), 14111–14122.Google Scholar
  61. 61.
    H. Jin, J. Li, L. Gao, F. Chen, and Q. Liu (2016). Graphitic mesoporous carbon xerogel as an effective catalyst support for oxygen reduction reaction. Int. J. Hydrogen Energy 41, (21), 9204–9210.Google Scholar
  62. 62.
    T. N. J. I. Edison, R. Atchudan, N. Karthik, and Y. R. Lee (2017). Green synthesized N-doped graphitic carbon sheets coated carbon cloth as efficient metal free electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 42, (21), 14390–14399.Google Scholar
  63. 63.
    X. Zhao, X. He, F. Yin, B. Chen, and H. Yin (2018). Cobalt-molybdenum carbide@graphitic carbon nanocomposites: Metallic cobalt promotes the electrochemical hydrogen evolution reaction. Int. J. Hydrogen Energy 43, (49), 22243–22252.Google Scholar
  64. 64.
    H. Liu, X. Wu, B. Yang, Z. Li, L. Lei, and X. Zhang (2015). Three-dimensional porous NiO nanosheets vertically grown on graphite disks for enhanced performance non-enzymatic glucose sensor. Electrochim. Acta 174, 745–752.Google Scholar
  65. 65.
    E. Laviron (1979). General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 101, (1), 19–28.Google Scholar
  66. 66.
    A. J. Bard and L. R. Faulkner. Electrochemical Methods. Fundamentals and Applications, 2nd ed (Wiley, New York, 2001).Google Scholar
  67. 67.
    L. Zheng, J.-Q. Zhang, and J.-F. Song (2009). Ni(II)–quercetin complex modified multiwall carbon nanotube ionic liquid paste electrode and its electrocatalytic activity toward the oxidation of glucose. Electrochim. Acta 54, (19), 4559–4565.Google Scholar
  68. 68.
    S. Zhang, Y. Zheng, L. Yuan, X. Wang, and L. Zhao (2014). In situ synthesis of nickel-boron amorphous alloy nanoparticles electrode on nanoporous copper film/brass plate for ethanol electro-oxidation. Int. J. Hydrogen Energy 39, (7), 3100–3108.Google Scholar
  69. 69.
    L. Wang, M. Li, Z. Huang, Y. Li, S. Qi, C. Yi, and B. Yang (2014). Ni-WC/C nanocluster catalysts for urea electrooxidation. J. Power Sources 264, 282–289.Google Scholar
  70. 70.
    L.-S. Yuan, Y.-X. Zheng, M.-L. Jia, S.-J. Zhang, X.-L. Wang, and C. Peng (2015). Nanoporous nickel-copper-phosphorous amorphous alloy film for methanol electro-oxidation in alkaline medium. Electrochim. Acta 154, 54–62.Google Scholar
  71. 71.
    P. Lu, Y. Lei, S. Lu, Q. Wang, and Q. Liu (2015). Three-dimensional roselike α-Ni(OH)2 assembled from nanosheet building blocks for non-enzymatic glucose detection. Anal. Chim. Acta 880, 42–51.Google Scholar
  72. 72.
    A. S. Danial, M. M. Saleh, S. A. Salih, and M. I. Awad (2015). On the synthesis of nickel oxide nanoparticles by sol-gel technique and its electrocatalytic oxidation of glucose. J. Power Sources 293, 101–108.Google Scholar
  73. 73.
    W. S. Cardoso, V. L. N. Dias, W. M. Costa, I. de Araujo Rodrigues, E. P. Marques, A. G. Sousa, J. Boaventura, C. W. B. Bezerra, C. Song, H. Liu, J. Zhang, and A. L. B. Marques (2009). Nickel-dimethylglyoxime complex modified graphite and carbon paste electrodes: preparation and catalytic activity towards methanol/ethanol oxidation. J. Appl. Electrochem. 39, (1), 55–64.Google Scholar
  74. 74.
    Y.-C. Weng and T.-C. Chou (2002). Ethanol sensors by using RuO2-modified Ni electrode. Sens. Actuat. B: Chem. 85, (3), 246–255.Google Scholar
  75. 75.
    G. Karim-Nezhad, S. Pashazadeh, and A. Pashazadeh (2012). Electrocatalytic oxidation of methanol and ethanol by carbon ceramic electrode modified with Ni/AlLDH nanoparticles. Chin. J. Catal. 33, (11–12), 1809–1816.Google Scholar
  76. 76.
    A. Ourari, H. Nora, C. Noureddine, and A. Djouhra (2015). Elaboration of new electrodes with carbon paste containing polystyrene functionalized by pentadentate nickel(II)-Schiff base complex–application to the electrooxidation reaction of methanol and its aliphatic analogs. Electrochim. Acta 170, 311–320.Google Scholar
  77. 77.
    J. Zhan, M. Cai, C. Zhang, and C. Wang (2015). Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media. Electrochim. Acta 154, 70–76.Google Scholar
  78. 78.
    D. Zhang, R. Zhang, C. Xu, Y. Fan, and B. Yuan (2015). Microwave-assisted solvothermal synthesis of nickel molybdate nanosheets as a potential catalytic platform for NADH and ethanol sensing. Sens. Actuat. B: Chem. 206, 1–7.Google Scholar
  79. 79.
    H. M. Moustafa, M. M. Nassar, M. A. Abdelkareem, M. S. Mahmoud, A. A. Almajid, and K. A. Khalil (2015). Distinct influence for carbon nano-morphology on the activity and optimum metal loading of Ni/C composite used for ethanol oxidation. Electrochim. Acta 182, 143–155.Google Scholar
  80. 80.
    R. M. Abdel Hameed (2019). Tin oxide species as promotive additives to Ni-P/C electrocatalysts for ethanol electro-oxidation in NaOH solution. Microchem J 146, 250–257.Google Scholar
  81. 81.
    R. S. Nicholson and I. Shain (1964). Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem. 36, (4), 706–723.Google Scholar
  82. 82.
    M. Jafarian, R. B. Moghaddam, M. G. Mahjani, and F. Gobal (2006). Electro-catalytic oxidation of methanol on a Ni–Cu alloy in alkaline medium. J. Appl. Electrochem. 36, (8), 913–918.Google Scholar
  83. 83.
    R. Ojani, J.-B. Raoof, and S. Fathi (2009). Nickel–poly(o-aminophenol)-modified carbon paste electrode; an electrocatalyst for methanol oxidation. J. Solid State Electrochem. 13, (6), 927–934.Google Scholar
  84. 84.
    X. Tong, Y. Qin, X. Guo, O. Moutanabbir, X. Ao, E. Pippel, L. Zhang, and M. Knez (2012). Enhanced catalytic activity for methanol electro-oxidation of uniformly dispersed nickel oxide nanoparticles-carbon nanotube hybrid materials. Small 8, (22), 3390–3395.Google Scholar
  85. 85.
    R. S. Amin, R. M. Abdel Hameed, K. M. El-Khatib, M. E. Youssef, and A. A. Elzatahry (2012). Pt–NiO/C anode electrocatalysts for direct methanol fuel cells. Electrochim. Acta 59, 499–508.Google Scholar
  86. 86.
    L. Qian, L. Gu, L. Yang, H. Yuan, and D. Xiao (2013). Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nanoscale 5, (16), 7388–7396.Google Scholar
  87. 87.
    A. Maritan and F. Toigo (1990). On skewed ARC plots of impedance of electrodes with an irreversible electrode process. Electrochim. Acta 35, (1), 141–145.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations