Incorporation of Keggin-Type Phosphomolybdic Acid, Ionic Liquid and Carbon Nanotube Leading to Formation of Multifunctional Ternary Composite Materials: Fabrication, Characterization and Electrochemical Reduction/Detection of Iodate, Borate and Nitrite

  • Ting Wang
  • Qingcheng Zhou
  • Xiaoyu Ren
  • Yunshan ZhouEmail author
  • Lijuan ZhangEmail author
  • Farooq K. Shehzad
  • Arshad Iqbal
Original Paper


Single wall carbon nanotube substituted ionic liquids were synthesized successfully by esterification reaction of the carboxylated single wall carbon nanotubes (SWNTs) with hydroxyl ammonium ionic liquids (ILs) of the formula CH3N(CH2CH2OH)2(CnH2n+1)Br (n = 4, 8, 12), which subsequently reacted with molybdophosphoric acid (PMo12) to form three new ternary composite materials (SWNTs-ILCn-PMo12) (n = 4, 8, 12). The composites modified glass carbon electrodes were used to study electrochemical properties systematically through cyclic voltammetry method. The results showed that electronic conductivity of SWNTs moiety and ionic conductivity of ILs moiety in the composite materials played important roles in the electrochemistry and electrocatalysis. The length of alkyl carbon chain of the ionic liquids in the composite materials was also found to influence the electrochemical properties. The experimental results also showed that all the composites modified electrode can catalytically reduce and detect IO3, BrO3 and NO2 with very high efficiency (low detection limit, short response time and wide linear range).


Composite materials Preparation Electrochemical reactons Sensor 



The financial support of the Natural Science Foundation of China is greatly acknowledged. Prof. Xue Duan, Beijing University of Chemical Technology, is greatly acknowledged for his kind support.

Supplementary material

10876_2019_1557_MOESM1_ESM.doc (4.9 mb)
Supplementary material 1 (DOC 5064 kb)


  1. 1.
    M. Galiński, A. Lewandowski, and I. Stępniak (2006). Electrochim. Acta 51, 5567.CrossRefGoogle Scholar
  2. 2.
    R. D. Rogers and K. R. Seddon (2003). Science 302, 792.CrossRefGoogle Scholar
  3. 3.
    A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed, and V. Tambyrajah (2001). Chem. Commun. 19, 2010.CrossRefGoogle Scholar
  4. 4.
    P. Wasserscheid and W. Keim (2000). Angew. Chem. Int. Ed. 39, 3772.CrossRefGoogle Scholar
  5. 5.
    S. V. Dzyuba and R. A. Bartsch (2001). Chem. Commun. 16, 1466.CrossRefGoogle Scholar
  6. 6.
    T. Hirashige, R. Hagiwara, and Y. Ito (2000). J. Fluorine Chem. 106, 205.CrossRefGoogle Scholar
  7. 7.
    J. C. Xiao and J. N. M. Shreeve (2005). J. Org. Chem. 70, 3072.CrossRefGoogle Scholar
  8. 8.
    X. H. Li, D. B. Zhao, Z. F. Fei, and L. F. Wang (2006). Sci. China Ser. B Chem. 36, 181.Google Scholar
  9. 9.
    A. Dolbecq, E. Dumas, C. R. Mayer, and P. Mialane (2010). Chem. Rev. 110, 6009.CrossRefGoogle Scholar
  10. 10.
    Y. H. Sun, L. I. Xiao-Ping, Z. M. Mei, Y. Zhu, and L. Niu (2011). Chem. Res. Chin. Univ. 27, 6.Google Scholar
  11. 11.
    Y. W. Li, Y. G. Li, Y. H. Wang, X. J. Feng, Y. Lu, and E. B. Wang (2009). Inorg. Chem. 48, 6452.CrossRefGoogle Scholar
  12. 12.
    G. Hou, L. Bi, B. Li, and L. Wu (2010). Inorg. Chem. 49, 6474.CrossRefGoogle Scholar
  13. 13.
    R. Thangamuthu, Y. C. Pan, and S. M. Chen (2010). Electroanalysis. 22, 1812.CrossRefGoogle Scholar
  14. 14.
    J. D. Kim, S. Hayashi, T. Mori, and I. Honma (2007). Electrochim. Acta 53, 963.CrossRefGoogle Scholar
  15. 15.
    X. Wu, W. Wu, Q. Wu, and W. Yan (2017). Langmuir. 33, 4242.CrossRefGoogle Scholar
  16. 16.
    L. Hu, D. S. Hecht, and G. Grüner (2010). Chem. Rev. 110, 5790.CrossRefGoogle Scholar
  17. 17.
    A. Sun, J. Zheng, and Q. Sheng (2012). Electrochim. Acta 65, 64.CrossRefGoogle Scholar
  18. 18.
    Y. Li, X. Liu, X. Liu, N. Mai, Y. Li, W. Wei, and Q. Cai (2011). B Biointerfaces 88, 402.CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, Y. Shen, J. Yuan, D. Han, Z. Wang, Q. Zhang, and L. Niu (2006). Angew. Chem. Int. Ed. 45, 5867.CrossRefGoogle Scholar
  20. 20.
    B. Haghighi, H. Hamidi, and L. Gorton (2010). Electrochim. Acta 55, 4750.CrossRefGoogle Scholar
  21. 21.
    B. K. Mishra, P. Mukherjee, S. Dash, S. Patel, and H. N. Pati (2009). Inorg. Chem. 39, 2529.Google Scholar
  22. 22.
    S. Roy, A. Dasgupta, and P. K. Das (2006). Langmuir 22, 4567.CrossRefGoogle Scholar
  23. 23.
    L. Liu, Y. Qin, Z. X. Guo, and D. Zhu (2003). Carbon 41, 331.CrossRefGoogle Scholar
  24. 24.
    E. Rogelhernández, G. Alonsonuñez, J. P. Camarena, H. Espinozagómez, G. Aguirre, F. Paraguaydelgado, and R. Somanathan (2011). J. Mex. Chem. Soc. 55, 7.Google Scholar
  25. 25.
    R. Claude, F. Michel, F. Raymonde, and T. Rene (1983). Inorg. Chem. 22, 207.CrossRefGoogle Scholar
  26. 26.
    W. Guo, L. Xu, F. Li, B. Xu, Y. Yang, S. Liu, and Z. Sun (2010). Electrochim. Acta 55, 1523.CrossRefGoogle Scholar
  27. 27.
    S. D. L. Cruz, M. D. Green, Y. Ye, Y. A. Elabd, T. E. Long, and K. I. Winey (2012). J. Polym. Sci. Part A: Polym. Chem. 50, 338.CrossRefGoogle Scholar
  28. 28.
    Z. Xu, N. Gao, and S. Dong (2006). Talanta 68, 753.CrossRefGoogle Scholar
  29. 29.
    J. Cheng, G. Sàghiszabó, J. A. T. And, and C. J. Miller (1996). J. Am. Chem. Soc. 118, 680.CrossRefGoogle Scholar
  30. 30.
    H. O. Finklea and D. D. Hanshew (1992). J. Am. Chem. Soc. 114, 3173.CrossRefGoogle Scholar
  31. 31.
    P. Wang, X. Wang, and G. Zhu (2000). Electroanalysis 12, 1493.CrossRefGoogle Scholar
  32. 32.
    Z. Li, J. Chen, D. Pan, W. Tao, L. Nie, and S. Yao (2006). Electrochim. Acta 51, 4255.CrossRefGoogle Scholar
  33. 33.
    T. Peter Laboratory Techniques in Electroanalytical Chemistry (Dekker, New York, 1984).Google Scholar
  34. 34.
    L. Guadagnini and D. Tonelli (2013). Sens. Actuators B Chem. 188, 806.CrossRefGoogle Scholar
  35. 35.
    A. Salimi, A. Noorbakhsh, and M. Ghadermarzi (2006). Sens. Actuators B Chemical 1, 530.Google Scholar
  36. 36.
    A. Salimi, V. Alizadeh, and H. Hadadzadeh (2010). Electroanalysis 16, 1984.CrossRefGoogle Scholar
  37. 37.
    W. Song, X. Chen, Y. Jiang, Y. Liu, C. Sun, and X. Wang (1999). Anal. Chim. Acta 394, 73.CrossRefGoogle Scholar
  38. 38.
    L. Li, W. Li, C. Sun, and L. Li (2002). Electroanalysis 14, 368.CrossRefGoogle Scholar
  39. 39.
    L. D. Li, W. J. Li, and C. Q. Li (2000). Chem. J. Chin. Univ. 21, 865.Google Scholar
  40. 40.
    T. Dong, F. Chen, J. Du, and C. Hu (2010). J. Cluster Sci. 21, 779.CrossRefGoogle Scholar
  41. 41.
    L. Liu, S. Y. Song, and P. Y. Zhang (2012). Acta Phys. Chim. Sin. 28, 427.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ting Wang
    • 1
  • Qingcheng Zhou
    • 1
  • Xiaoyu Ren
    • 1
  • Yunshan Zhou
    • 1
    Email author
  • Lijuan Zhang
    • 1
    Email author
  • Farooq K. Shehzad
    • 1
  • Arshad Iqbal
    • 1
  1. 1.State Key Laboratory of Chemical Resource Engineering, Institute of ScienceBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations