Advertisement

Antibiofilm and Antimicrobial Activities of Silver Boron Nanoparticles Synthesized by PVP Polymer and Gamma Rays Against Urinary Tract Pathogens

  • Ahmed I. El-Batal
  • Gharieb S. El-SayyadEmail author
  • Nawal E. Al-Hazmi
  • Mohamed Gobara
Original Paper
  • 61 Downloads

Abstract

In the present study gamma-rays induced eco-friendly synthesis of silver boron nanoparticles (AgB NPs) using PVP polymer as a stabilizing agent. Antimicrobial and antibiofilm activities of AgB NPs were examined against multidrug-resistant microbes that cause urinary tract infection (UTI). AgB NPs were characterized by UV–Vis, SEM/mapping images, EDX, HRTM, DLS, FTIR and XRD analysis. A proposed reaction mechanism was investigated. Data obtained from results indicated that AgB NPs production was dependent on silver nitrate and boric acid concentrations. HRTEM image displayed the anisotropic AgB NPs with a diameter of 85.25 nm. FTIR spectrum data shows that there is a continuous reduction of ions due to the oxidation of PVP. Ring opening was assigned by N–H bond formation. AgB NPs presented a great efficiency against Candida albicans (20.0 mm ZOI) followed by Escherichia coli (18.0 mm ZOI) and Staphylococcus aureus (16.0 mm ZOI). Additionally, AgB NPs were provided biofilm inhibition % as 87.0, 85.3, and 69.4% against S. aureus, E. coli, and C. albicans, respectively. Accordingly, due to AgB NPs properties such as encourages antimicrobial agent with continued-term stability; they must identify possible purposes within pharmaceutical and medical application in the UTI treatment.

Keywords

FTIR Facile synthesis Candida albicans Gamma-rays Antibiofilm Staphylococcus aureus 

Notes

Acknowledgements

The authors would like to thank Prof. Mohamed M. Ghobashy (Associate Professor at NCRRT), Dr. Muhamed I. Abdel Maksoud (Lecturer at NCRRT), and Zeiss microscope team in Cairo for their invaluable advice during this study.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10876_2019_1553_MOESM1_ESM.doc (29 kb)
Supplementary material 1 (DOC 29 kb)

References

  1. 1.
    M. M. Ghobashy and M. R. Khafaga (2017). J. Polym. Environ. 25, (2), 343–348.Google Scholar
  2. 2.
    M. A. Maksoud, G. S. El-Sayyad, A. Ashour, A. I. El-Batal, M. S. Abd-Elmonem, H. A. Hendawy, E. Abdel-Khalek, S. Labib, E. Abdeltwab, and M. El-Okr (2018). Mater. Sci. Eng., C 92, 644–656.Google Scholar
  3. 3.
    A. Baraka, S. Dickson, M. Gobara, G. S. El-Sayyad, M. Zorainy, M. I. Awaad, H. Hatem, M. M. Kotb, and A. Tawfic (2017). Chem. Pap. 71, (11), 2271–2281.Google Scholar
  4. 4.
    M. M. Ghobashy, and T. M. Mohamed (2018). J. Inorg. Organomet. Polym. Mater., 1–9.Google Scholar
  5. 5.
    A. I. El-Batal, F. M. Mosallam, and G. S. El-Sayyad (2018). J. Cluster Sci. 29, (6), 1003–1015.Google Scholar
  6. 6.
    A. F. El-Baz, A. I. El-Batal, F. M. Abomosalam, A. A. Tayel, Y. M. Shetaia, and S. T. Yang (2016). J. Basic Microbiol. 56, (5), 531–540.Google Scholar
  7. 7.
    G. Carotenuto, Y.-S. Her, and E. Matijević (1996). Ind. Eng. Chem. Res. 35, (9), 2929–2932.Google Scholar
  8. 8.
    M. Lira-Cantú and P. Gómez-Romero (1998). Chem. Mater. 10, (3), 698–704.Google Scholar
  9. 9.
    J. J. Tunney and C. Detellier (1996). Chem. Mater. 8, (4), 927–935.Google Scholar
  10. 10.
    J.-H. Choy, S.-J. Kwon, S.-J. Hwang, Y.-I. Kim, and W. Lee (1999). J. Mater. Chem. 9, (1), 129–135.Google Scholar
  11. 11.
    C. Sanchez, F. Ribot, and B. Lebeau (1999). J. Mater. Chem. 9, (1), 35–44.Google Scholar
  12. 12.
    C. O. Oriakhi and M. M. Lerner (1996). Chem. Mater. 8, (8), 2016–2022.Google Scholar
  13. 13.
    L. Ouahab (1997). Chem. Mater. 9, (9), 1909–1926.Google Scholar
  14. 14.
    T. Morsi, A. M. Elbarbary, M. M. Ghobashy, and S. H. Othman (2018). Radiochim. Acta 106, (5), 383–392.Google Scholar
  15. 15.
    M. G. Naseri, E. B. Saion, H. A. Ahangar, and A. H. Shaari (2013). Mater. Res. Bull. 48, (4), 1439–1446.Google Scholar
  16. 16.
    M. G. Naseri, E. B. Saion, M. Hashim, A. H. Shaari, and H. A. Ahangar (2011). Solid State Commun. 151, (14–15), 1031–1035.Google Scholar
  17. 17.
    A. Goffeau (2008). Nature 452, (7187), 541.Google Scholar
  18. 18.
    C. F. Marrs, L. Zhang, and B. Foxman (2005). FEMS Microbiol. Lett. 252, (2), 183–190.Google Scholar
  19. 19.
    I. Kolodkin-Gal, S. Cao, L. Chai, T. Böttcher, R. Kolter, J. Clardy, and R. Losick RETRACTED: A Self-Produced Trigger for Biofilm Disassembly that Targets Exopolysaccharide (Elsevier, Amsterdam, 2012).Google Scholar
  20. 20.
    R. Singh, D. Paul, and R. K. Jain (2006). Trends Microbiol. 14, (9), 389–397.Google Scholar
  21. 21.
    E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp (2004). J. Phys. Chem. B 108, (4), 1224–1229.Google Scholar
  22. 22.
    C. Salzemann, I. Lisiecki, A. Brioude, J. Urban, and M.-P. Pileni (2004). J. Phys. Chem. B 108, (35), 13242–13248.Google Scholar
  23. 23.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan (2003). Adv. Mater. 15, (5), 353–389.Google Scholar
  24. 24.
    Z. Wang, T. Ahmad, and M. El-Sayed (1997). Surf. Sci. 380, (2–3), 302–310.Google Scholar
  25. 25.
    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment (ACS Publications, Washington, DC, 2003).Google Scholar
  26. 26.
    K. Gopinath, N. P. Devi, M. Govindarajan, K. Bhakyaraj, S. Kumaraguru, A. Arumugam, N. S. Alharbi, S. Kadaikunnan, and G. Benelli (2017). J. Cluster Sci. 28, (3), 1541–1550.Google Scholar
  27. 27.
    A. El-Batal, B. M. Haroun, A. A. Farrag, A. Baraka, and G. S. El-Sayyad (2014). Br. J. Pharm. Res. 4, (11), 1341.Google Scholar
  28. 28.
    A. I. El-Batal, N. E. Al-Hazmi, F. M. Mosallam, and G. S. El-Sayyad (2018). Microb. Pathog. 118, 159–169.Google Scholar
  29. 29.
    A. I. El-Batal, N. M. Sidkey, A. Ismail, R. A. Arafa, and R. M. Fathy (2016). J. Chem. Pharm. Res 8, (4), 934–951.Google Scholar
  30. 30.
    G. S. El-Sayyad, F. M. Mosallam, and A. I. El-Batal (2018). Adv. Powder Technol. 29, (11), 2616–2625.Google Scholar
  31. 31.
    M. M. Ghobashy, S. A. Alkhursani, and M. Madani (2018). Polym. Bull., 1–16.Google Scholar
  32. 32.
    F. M. Mosallam, G. S. El-Sayyad, R. M. Fathy, and A. I. El-Batal (2018). Microb. Pathog. 122, 108–116.Google Scholar
  33. 33.
    J. Li, B. Kang, S. Chang, and Y. Dai (2012). Micro Nano Lett. 7, (4), 360–362.Google Scholar
  34. 34.
    A. I. El-Batal, G. S. El-Sayyad, A. El-Ghamery, and M. Gobara (2017). J. Cluster Sci. 28, (3), 1083–1112.Google Scholar
  35. 35.
    A. I. El-Batal, F. M. Mosalam, M. Ghorab, A. Hanora, and A. M. Elbarbary (2018). Int. J. Biol. Macromol. 107, 2298–2311.Google Scholar
  36. 36.
    A. I. El-Batal, G. S. El-Sayyad, A. El-Ghamry, K. M. Agaypi, M. A. Elsayed, and M. Gobara (2017). J. Photochem. Photobiol., B 173, 120–139.Google Scholar
  37. 37.
    R. R. Banala, V. B. Nagati, and P. R. Karnati (2015). Saudi J. Biol. Sci. 22, (5), 637–644.Google Scholar
  38. 38.
    R. Bryaskova, D. Pencheva, S. Nikolov, and T. Kantardjiev (2011). J. Chem. Biol. 4, (4), 185.Google Scholar
  39. 39.
    A. Ashour, A. I. El-Batal, M. A. Maksoud, G. S. El-Sayyad, S. Labib, E. Abdeltwab, and M. El-Okr (2018). Particuology 40, 141–151.Google Scholar
  40. 40.
    M. Balouiri, M. Sadiki, and S. K. Ibnsouda (2016). J. Pharm. Anal. 6, (2), 71–79.Google Scholar
  41. 41.
    G. D. Christensen, W. A. Simpson, A. L. Bisno, and E. H. Beachey (1982). Infect. Immun. 37, (1), 318–326.Google Scholar
  42. 42.
    M. A. Ansari, H. M. Khan, A. A. Khan, S. S. Cameotra, and R. Pal (2014). Appl. Nanosci. 4, (7), 859–868.Google Scholar
  43. 43.
    K. Brownlee (1952). JSTOR.Google Scholar
  44. 44.
    F.-K. Liu, Y.-C. Hsu, M.-H. Tsai, and T.-C. Chu (2007). Mater. Lett. 61, (11–12), 2402–2405.Google Scholar
  45. 45.
    M. Składanowski, M. Wypij, D. Laskowski, P. Golińska, H. Dahm, and M. Rai (2017). J. Cluster Sci. 28, (1), 59–79.Google Scholar
  46. 46.
    S. Link and M. A. El-Sayed (2003). Annu. Rev. Phys. Chem. 54, (1), 331–366.Google Scholar
  47. 47.
    O. Borokhov and D. Schubert Antimicrobial Properties of Boron Derivatives, ACS Symposium Series (Oxford University Press, Oxford, 2007), pp. 412–435.Google Scholar
  48. 48.
    R. Scott, A. J. Veinot, D. Stack, P. Gormley, N. Khuong, C. M. Vogels, J. D. Masuda, F. Baerlocher, T. MacCormack, and S. A. Westcott (2018). Can. J. Chem. (ja).Google Scholar
  49. 49.
    P. Beyli, M. Doğan, Z. Gündüz, M. Alkan, and Y. Turhan (2018). Adv. Mater. Sci. 18, (1), 28–36.Google Scholar
  50. 50.
    W. Yuzheng, X. Xiangxin, and Y. He (2014). Chin. J. Chem. Eng. 22, (4), 474–479.Google Scholar
  51. 51.
    A. A. Abdel-Fattah, Y. S. Soliman, and M. Ghobashy (2018). J. Polym. Res. 25, (4), 106.Google Scholar
  52. 52.
    A. I. El-Batal, A. A. Farrag, M. A. Elsayed, and A. M. El-Khawaga (2016). Bioengineering 3, (2), 14.Google Scholar
  53. 53.
    D. Ozer, D. A. Köse, O. Sahin, and N. A. Oztas (2018). J. Mol. Struct. 1157, 159–164.Google Scholar
  54. 54.
    B. Sadeghi, M. Sadjadi, and A. Pourahmad (2008). Int. J. Nanosci. Nanotechnol. 4, (1), 3–12.Google Scholar
  55. 55.
    K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A. Sharma, and V. V. R. Narasimha Rao (2012). J. Non-Cryst. Solids 358, (23), 3205–3211.Google Scholar
  56. 56.
    K. K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A. Sharma, and V. N. Rao (2014). J. Membr. Sci. 454, 200–211.Google Scholar
  57. 57.
    N. F. Himma, A. K. Wardani, N. Prasetya, P. T. Aryanti, and I. G. Wenten. Rev. Chem. Eng.Google Scholar
  58. 58.
    W. H. Eisa, Y. K. Abdel-Moneam, Y. Shaaban, A. A. Abdel-Fattah, and A. M. A. Zeid (2011). Mater. Chem. Phys. 128, (1–2), 109–113.Google Scholar
  59. 59.
    K. N. Kumar, K. Sivaiah, and S. Buddhudu (2014). J. Lumin. 147, 316–323.Google Scholar
  60. 60.
    A. Abdelghany, E. Abdelrazek, and D. Rashad (2014). Spectrochim. Acta A: Mol. Biomol. Spectrosc. 130, 302–308.Google Scholar
  61. 61.
    S. Selvasekarapandian, R. Baskaran, O. Kamishima, J. Kawamura, and T. Hattori (2006). Spectrochim. Acta A: Mol. Biomol. Spectrosc. 65, (5), 1234–1240.Google Scholar
  62. 62.
    E. Abdelrazek, A. Abdelghany, S. Badr, and M. Morsi (2016). Res. J. Pharm. Biol. Chem. Sci. 7, 1877–1890.Google Scholar
  63. 63.
    A. Abdelghany, E. Abdelrazek, S. Badr, and M. Morsi (2016). Mater. Des. 97, 532–543.Google Scholar
  64. 64.
    P.-Y. Silvert, R. Herrera-Urbina, and K. Tekaia-Elhsissen (1997). J. Mater. Chem. 7, (2), 293–299.Google Scholar
  65. 65.
    Z. Zhang, B. Zhao, and L. Hu (1996). J. Solid State Chem. 121, (1), 105–110.Google Scholar
  66. 66.
    Y. Wang and H. Wang (2009). Radiat. Phys. Chem. 78, (3), 234–237.Google Scholar
  67. 67.
    A. Mergen, M. Demirhan, and M. Bilen (2003). Adv. Powder Technol. 14, (3), 279–294.Google Scholar
  68. 68.
    M. G. Naseri, E. Saion, and N. K. Zadeh (2013). Int. Nano Lett. 3, (1), 19.Google Scholar
  69. 69.
    A. Gannoruwa, B. Ariyasinghe, and J. Bandara (2016). Catal. Sci. Technol. 6, (2), 479–487.Google Scholar
  70. 70.
    Z.-X. Tang and B.-F. Lv (2014). Braz. J. Chem. Eng. 31, (3), 591–601.Google Scholar
  71. 71.
    S. Pal, Y. K. Tak, and J. M. Song (2007). Appl. Environ. Microbiol. 73, (6), 1712–1720.Google Scholar
  72. 72.
    M. R. Das, R. K. Sarma, S. C. Borah, R. Kumari, R. Saikia, A. B. Deshmukh, M. V. Shelke, P. Sengupta, S. Szunerits, and R. Boukherroub (2013). Colloids Surf., B 105, 128–136.Google Scholar
  73. 73.
    A. Saeb, A. S. Alshammari, H. Al-Brahim, and K. A. Al-Rubeaan (2014). Sci. World J. 2014.Google Scholar
  74. 74.
    J. Shepherd, S. M. Cobbe, I. Ford, C. G. Isles, A. R. Lorimer, P. W. Macfarlane, J. H. McKillop, and C. J. Packard (1995). N. Engl. J. Med. 333, (20), 1301–1308.Google Scholar
  75. 75.
    W. Akbar, M. R. Noor, K. Kowal, T. Syed, T. Soulimane, and G. B. Basim (2017). Adv. Powder Technol. 28, (2), 596–610.Google Scholar
  76. 76.
    T. K. Wood (2009). Environ. Microbiol. 11, (1), 1–15.Google Scholar
  77. 77.
    J. W. Costerton, K. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta, and T. J. Marrie (1987). Ann. Rev. Microbiol. 41, (1), 435–464.Google Scholar
  78. 78.
    A. Lateef, I. Adelere, E. Gueguim-Kana, T. Asafa, and L. Beukes (2015). Int. Nano Lett. 5, (1), 29–35.Google Scholar
  79. 79.
    K. Kalishwaralal, S. BarathManiKanth, S. R. K. Pandian, V. Deepak, and S. Gurunathan (2010). Colloids Surf., B 79, (2), 340–344.Google Scholar
  80. 80.
    I. Matai, A. Sachdev, P. Dubey, S. U. Kumar, B. Bhushan, and P. Gopinath (2014). Colloids Surf., B 115, 359–367.Google Scholar
  81. 81.
    R. Žalnėravičius, A. Paškevičius, K. Mažeika, and A. Jagminas (2018). Appl. Surf. Sci. 435, 141–148.Google Scholar
  82. 82.
    V. Kostenko, J. Lyczak, K. Turner, and R. J. Martinuzzi (2010). Antimicrob. Agents Chemother. 54, (12), 5120–5131.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Drug Radiation Research Department, Biotechnology DivisionNational Center for Radiation Research and Technology (NCRRT), Atomic Energy AuthorityCairoEgypt
  2. 2.Department of Chemistry, Division of Biology (Microbiology), University College of QunfudahUmm Al-Qura UniversityMeccaSaudi Arabia
  3. 3.Chemical Engineering Department, Military Technical CollageEgyptian Armed ForcesCairoEgypt

Personalised recommendations