Advertisement

Neodymium–Dysprosium and Neodymium–Ytterbium Iodide–Sulfide–Nitride Clusters: Synthesis and Luminescence

  • A. A. Fagin
  • O. V. KuznetsovaEmail author
  • R. V. Rumyantcev
  • G. K. Fukin
  • A. V. Marugin
  • M. N. BochkarevEmail author
Special Issue: IYPT2019
  • 18 Downloads

Abstract

Heterolanthanide clusters Nd2LnI5(S3)(S2N2)(THF)9 (Ln = Dy, Yb) are synthesized by the reactions of (NdI)3N2 with DyI3 or YbI3 and sulfur in a THF solution. X-ray diffraction analysis revealed that the structure of the complexes is similar to the structure of Nd2LnI5(S3)(S2N2)(THF) 9 obtained earlier (Ln = Tb, Tm). The ion Dy3 + in the molecule is coordinated by the iodine atom, the S2 group and the terminal N atom in the resulting S3N2 ligand. Cluster Nd2YbI5(S3)(S2N2)(THF)9 of the same structure was obtained as well when YbI2 was used instead of YbI3. Possible pathways of the reactions are discussed. UV excitation of Nd2DyI5(S3)(S2N2)(THF)9 causes low-intensity emission of Dy3+ ions: two bands at 480 and 580 nm. Magnetic measurements showed no exchange interaction in the obtained clusters.

Keywords

Heterolanthanide clusters Synthesis Molecular structure Luminescence 

Notes

Acknowledgements

This work was supported by the Russian Foundation of Basic Research and the government of the region of the Russian Federation, Project No. 18-43-520002. Authors thank Dr. N. N. Efimov (IONC RAS) for magnetic measurements at low temperature.

Supplementary material

10876_2019_1552_MOESM1_ESM.docx (231 kb)
Supplementary material 1 (DOCX 231 kb)

References

  1. 1.
    Z. Zhang, L. Zhang, Y. Li, L. Hong, Z. Chen, and X. Zhou (2010). Inorg. Chem. 49, 5715.CrossRefGoogle Scholar
  2. 2.
    W. Boncher, H. Dalafu, N. Rosa, and S. Stoll (2015). Coord. Chem. Rev. 289–290, 279.CrossRefGoogle Scholar
  3. 3.
    C. J. Müller, U. Schwarz, and T. Doert (2012). Z. Anorg. Allg. Chem. 638, 1.CrossRefGoogle Scholar
  4. 4.
    M. Fitzgerald, T. J. Emge, and J. G. Brennan (2002). Inorg. Chem. 41, 3528.CrossRefGoogle Scholar
  5. 5.
    C. Schoo, S. Bestgen, R. Köppe, S. N. Konchenko, and P. W. Roesky (2018). Chem. Commun. 54, 4770.CrossRefGoogle Scholar
  6. 6.
    Y.-Z. Ma, S. Bestgen, M. T. Gamer, S. N. Konchenko, and P. W. Roesky (2017). Angew. Chem. Int. Ed. 56, 13249.CrossRefGoogle Scholar
  7. 7.
    E. Rogers, P. Dorenbos, and E. van der Kolk (2011). New J. Phys. 13, 093038.CrossRefGoogle Scholar
  8. 8.
    F. Lissner and T. Schleid (1994). Z. Anorg. Allg. Chem. 620, 1998.CrossRefGoogle Scholar
  9. 9.
    F. Lissner, M. Meyer, and T. Schleid (1996). Z. Anorg. Allg. Chem. 622, 275.CrossRefGoogle Scholar
  10. 10.
    T. Schleid and F. Lissner (2008). J. Alloys Compds. 451, 610.CrossRefGoogle Scholar
  11. 11.
    R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Hőppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt (2005). Phys. Status Solidi A. 202, 1727.CrossRefGoogle Scholar
  12. 12.
    Y. Q. Wang and A. J. Steck (2003). Appl. Phys. Lett. 82, 502.CrossRefGoogle Scholar
  13. 13.
    F. Lissner and T. Schleid (2017). Inorganics 5, 2.CrossRefGoogle Scholar
  14. 14.
    J. Zhou (2016). Coord. Chem. Rev. 315, 112.CrossRefGoogle Scholar
  15. 15.
    A. A. Fagin, G. K. Fukin, A. V. Cherkasov, A. F. Shestakov, A. P. Pushkarev, T. V. Balashova, A. A. Maleev, and M. N. Bochkarev (2016). Dalton. Trans. 45, 4558.CrossRefGoogle Scholar
  16. 16.
    H. Gysling and M. Tsutsui (1970). Adv. Organomet. Chem. 9, 361.CrossRefGoogle Scholar
  17. 17.
    A. A. Fagin, D. M. Kuzyaev, A. A. Maleev, E. V. Baranov, R. V. Rumyantcev, G. K. Fukin, A. F. Shestakov, A. I. Suchkov, A. V. Marugin, and M. N. Bochkarev (2019). Inorg. Chim. Acta 490, 200.CrossRefGoogle Scholar
  18. 18.
    W. J. Evans, G. W. Rabe, J. W. Ziller, and R. J. Doedens (1994). Inorg. Chem. 33, 2719.CrossRefGoogle Scholar
  19. 19.
    J. H. Melman, M. Fitzgerald, D. Freedman, T. J. Emge, and J. G. Brennan (1999). J. Am. Chem. Soc. 121, 10247.CrossRefGoogle Scholar
  20. 20.
    M. Kühling, R. McDonald, P. Liebing, L. Hilfert, M. J. Ferguson, J. Takats, and F. T. Edelmann (2016). Dalton Trans. 45, 10118.CrossRefGoogle Scholar
  21. 21.
    R. D. Shannon (1976). Acta Cryst. A. 32, 751.CrossRefGoogle Scholar
  22. 22.
    A. M. Bienfait, B. M. Wolf, K. W. Tornroos, and R. Anwander (2018). Inorg. Chem. 57, 5204.CrossRefGoogle Scholar
  23. 23.
    A. M. Dietel, C. Doring, G. Glatz, M. V. Butovskii, O. Tok, F. M. Schappacher, R. Pottgen, and R. Kempe (2009). Eur. J. Inorg. Chem. 2009, 1051.CrossRefGoogle Scholar
  24. 24.
    G. Depaoli, P. Ganis, and P. L. Zanonato (1993). Polyhedron 12, 1933.CrossRefGoogle Scholar
  25. 25.
    A. V. Protchenko and M. N. Bochkarev (1990). Instrum. Exp. Tech. 33, 206.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Fagin
    • 1
  • O. V. Kuznetsova
    • 1
    Email author
  • R. V. Rumyantcev
    • 1
  • G. K. Fukin
    • 1
  • A. V. Marugin
    • 2
  • M. N. Bochkarev
    • 1
    • 2
    Email author
  1. 1.G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Nizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations