Spirulina platensis-Polysaccharides Promoted Green Silver Nanoparticles Production Using Gamma Radiation to Suppress the Expansion of Pear Fire Blight-Producing Erwinia amylovora

  • Mohamed S. Attia
  • Gharieb S. El-SayyadEmail author
  • Sherif S. Saleh
  • Naglaa M. Balabel
  • Ahmed I. El-Batal
Original Paper


The present research examined the influence of eco-friendly silver nanoparticles (Ag NPs) synthesized by Spirulina platensis-polysaccharides and gamma rays on the growth of bacterial plant pathogen which caused pear fire blight. Plant pathogen was isolated from blighted blossoms, leaves, and thin slices of cankerous branches of the pear and identified both biochemically and genetically as Erwinia amylovora. Silver nitrate was mixed with S. platensis-polysaccharide and used for the biogenic Ag NPs biosynthesis under the influence of gamma radiation. The synthesized Ag NPs was characterized by UV–Vis., HRTEM, DLS, XRD, FTIR, SEM, EDX, and mapping analysis. Data received from HRTEM and DLS calculated the average particles size of the spherical Ag NPs and was found to be 25.25 nm. FTIR analysis determined a polysaccharide which extracted from S. platensis and effective for the reduction of Ag+. Ag NPs exhibited antibacterial potential against E. amylovora (17.0 mm ZOI), while Ag+ possesses activity about 8.0 mm ZOI, and S. platensis filtrate possesses no activity against the tested bacteria. Owing to the different characteristics of the biogenic Ag NPs as purity, antibacterial activity and green eco-friendly method, they may be applied in the agriculture field as pure, safe and new nanomaterial-based treatment.


Erwinia amylovora Green algae Ag NPs Pear (Pyrus spp.) Polysaccharides Plant pathogens 



The authors would like to thank the Nanotechnology Research Unit (P.I. Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/Biotechnological and Irradiation Processes”. Also, the authors would like to thank Prof. Mohamed Gobara (Professor at Military Technical College, Egyptian Armed Forces), Dr. Muhamed I. Abdel Maksoud (Lecturer at NCRRT), and Zeiss microscope team in Cairo for their invaluable advice during this study.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    T. Van der Zwet, N. Orolaza-Halbrendt, and W. Zeller Fire Blight: History, Biology, and Management (American Phytopathological Society, St. Paul, 2012).Google Scholar
  2. 2.
    T. Van Der Zwet and S. V. Beer Fire Blight: Its Nature, Prevention, and Control: A Practice Guide to Integrated Disease Management (Agriculture information bulletin, Washington, 1992).Google Scholar
  3. 3.
    T. Doolotkeldieva and S. Bobusheva (2016). Adv. Microbiol. 6, (11), 831.Google Scholar
  4. 4.
    M. Schroth, S. Thomson, D. Hildebrand, and W. Moller (1974). Ann. Rev. Phytopathol. 12, (1), 389–412.Google Scholar
  5. 5.
    J. Paulin and G. Lachaud, Comparison of the efficiency of some chemicals in preventing fireblight blossom infections, III International Workshop on Fire Blight vol. 151, (1983), pp. 209–214.Google Scholar
  6. 6.
    K. Shameli, M. Bin Ahmad, E. A. Jaffar Al-Mulla, N. A. Ibrahim, P. Shabanzadeh, A. Rustaiyan, Y. Abdollahi, S. Bagheri, S. Abdolmohammadi, and M. S. Usman (2012). Molecules 17, (7), 8506–8517.Google Scholar
  7. 7.
    A. A. Ponce and K. J. Klabunde (2005). J. Mol. Catal. A Chem. 225, (1), 1–6.Google Scholar
  8. 8.
    M. Raffi, S. Mehrwan, T. M. Bhatti, J. I. Akhter, A. Hameed, W. Yawar, and M. M. ul Hasan (2010). Ann. Microbiol. 60, (1), 75–80.Google Scholar
  9. 9.
    A. I. El-Batal, F. M. Mosallam, and G. S. El-Sayyad (2018). J. Clust. Sci. 29, (6), 1003–1015.Google Scholar
  10. 10.
    A. I. El-Batal, N. E. Al-Hazmi, F. M. Mosallam, and G. S. El-Sayyad (2018). Microb. Pathog. 118, 159–169.Google Scholar
  11. 11.
    F. M. Mosallam, G. S. El-Sayyad, R. M. Fathy, and A. I. El-Batal (2018). Microb. Pathog. 122, 108–116.Google Scholar
  12. 12.
    A. F. El-Baz, A. I. El-Batal, F. M. Abomosalam, A. A. Tayel, Y. M. Shetaia, and S. T. Yang (2016). J. Basic Microbiol. 56, (5), 531–540.Google Scholar
  13. 13.
    K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment (ACS Publications, Washington, 2003).Google Scholar
  14. 14.
    D. Longano, N. Ditaranto, L. Sabbatini, L. Torsi, and N. Cioffi Synthesis and Antimicrobial Activity of Copper Nanomaterials, Nano-Antimicrobials (Springer, Berlin, 2012), pp. 85–117.Google Scholar
  15. 15.
    A. I. El-Batal, F. M. Mosalam, M. Ghorab, A. Hanora, and A. M. Elbarbary (2018). Int. J. Biol. Macromol. 107, 2298–2311.Google Scholar
  16. 16.
    G. S. El-Sayyad, F. M. Mosallam, and A. I. El-Batal (2018). Adv. Powder Technol. 29, (11), 2616–2625.Google Scholar
  17. 17.
    M. M. Ghobashy and T. M. Mohamed (2018). J. Inorg. Organomet. Polym. Mater. 28, (6), 2297–2305.Google Scholar
  18. 18.
    A. I. El-Batal, G. S. El-Sayyad, A. El-Ghamry, K. M. Agaypi, M. A. Elsayed, and M. Gobara (2017). J. Photochem. Photobiol. B Biol. 173, 120–139.Google Scholar
  19. 19.
    K. Ishaq, A. A. Saka, A. O. Kamardeen, A. Ahmed, M. I. H. Alhassan, and H. Abdullahi (2017). Int. J. Eng. Sci. Technol. 20, (2), 563–569.Google Scholar
  20. 20.
    M. M. Ghobashy and M. R. Khafaga (2017). J. Polym. Environ. 25, (2), 343–348.Google Scholar
  21. 21.
    A. I. El-Batal, G. S. El-Sayyad, A. El-Ghamery, and M. Gobara (2017). J. Clust. Sci. 28, (3), 1083–1112.Google Scholar
  22. 22.
    M. Ghorab, A. El-Batal, A. Hanora, and F. M. A. Mosalam (2016). Br. Biotechnol. J. 16, (1), 1–25.Google Scholar
  23. 23.
    A. El-Batal, M. H. El-Sayed, B. M. Refaat, and A. A. Z. Askar (2014). Br. J. Pharm. Res. 4, (21), 2525.Google Scholar
  24. 24.
    A. El-Batal, B. M. Haroun, A. A. Farrag, A. Baraka, and G. S. El-Sayyad (2014). Br. J. Pharm. Res. 4, (11), 1341.Google Scholar
  25. 25.
    W. Wijesinghe and Y.-J. Jeon (2012). Carbohydr. Polym. 88, (1), 13–20.Google Scholar
  26. 26.
    R. Chaiklahan, N. Chirasuwan, P. Triratana, V. Loha, S. Tia, and B. Bunnag (2013). Int. J. Biol. Macromol. 58, 73–78.Google Scholar
  27. 27.
    A. Parikh and D. Madamwar (2006). Bioresour. Technol. 97, (15), 1822–1827.Google Scholar
  28. 28.
    Z. Persin, K. Stana-Kleinschek, T. J. Foster, J. E. Van Dam, C. G. Boeriu, and P. Navard (2011). Carbohydr. Polym. 84, (1), 22–32.Google Scholar
  29. 29.
    H. Majdoub, M. B. Mansour, F. Chaubet, M. S. Roudesli, and R. M. Maaroufi (2009). Biochim. Biophys.Acta (BBA) Gen. Subj. 1790, (10), 1377–1381.Google Scholar
  30. 30.
    N. Chirasuwan, R. Chaiklahan, M. Ruengjitchatchawalya, B. Bunnag, and M. Tanticharoen (2007). Kasetsart J. Nat. Sci. 41, 311–318.Google Scholar
  31. 31.
    Y. M. Amin, A. M. Hawas, A. El-Batal, S. H. Hassan, and M. E. Elsayed (2016). Br. J. Pharmacol. Toxicol. 7, (4), 36–50.Google Scholar
  32. 32.
    M. M. Ghobashy, S. A. Alkhursani, and M. Madani (2018). Polym. Bull. 75, 5477–5492.Google Scholar
  33. 33.
    A. El-Batal, A. El-Baz, F. Abo Mosalam, and A. Tayel (2013). J. Chem. Pharm. Res. 5, (8), 1–15.Google Scholar
  34. 34.
    A. I. EL-Batal and S. F. Ahmed (2018) Braz. Oral Res. 32, 1–9.Google Scholar
  35. 35.
    A. I. El-Batal, F. A. E.-L. Gharib, S. M. Ghazi, A. Z. Hegazi, and A. G. M. A. E. Hafz (2016). Nanomater. Nanotechnol. 6, 13.Google Scholar
  36. 36.
    A. I. El-Batal, N. M. Sidkey, A. Ismail, R. A. Arafa, and R. M. Fathy (2016). J. Chem. Pharm. Res 8, (4), 934–951.Google Scholar
  37. 37.
    A.-W. A. Ismail, N. M. Sidkey, R. A. Arafa, R. M. Fathy, and A. I. El-Batal (2016). Br. Biotechnol. J. 12, (3), 1.Google Scholar
  38. 38.
    A. Baraka, S. Dickson, M. Gobara, G. S. El-Sayyad, M. Zorainy, M. I. Awaad, H. Hatem, M. M. Kotb, and A. Tawfic (2017). Chem. Pap. 71, (11), 2271–2281.Google Scholar
  39. 39.
    R. R. Banala, V. B. Nagati, and P. R. Karnati (2015). Saudi J. Biol. Sci. 22, (5), 637–644.Google Scholar
  40. 40.
    T. Miller and M. Schroth (1972). Phytopathology 62, 1175–1182.Google Scholar
  41. 41.
    C. Kado and M. Heskett (1970). Phytopathology 60, (6), 969–976.Google Scholar
  42. 42.
    J. Crosse and R. Goodman (1973). Phytopathology 63, (11), 1425–1426.Google Scholar
  43. 43.
    E. O. King, M. K. Ward, and D. E. Raney (1954). Transl. Res. 44, (2), 301–307.Google Scholar
  44. 44.
    N. W. Schaad, J. B. Jones, and W. Chun Laboratory Guide for the Identification of Plant Pathogenic Bacteria (American Phytopathological Society (APS Press), St. Paul, 2001).Google Scholar
  45. 45.
    M. Westwood Fruit Growth and Thinning, Temperate-Zone Pomology (WH Frseeman, San Francisco, CA, 1978), pp. 199–201.Google Scholar
  46. 46.
    J. Holt, N. Krieg, P. Sneath, J. Staley, and S. Williams Bergey’s Manual of Determinative Microbiology (Williams and Wilkins, Maryland, 1994).Google Scholar
  47. 47.
    S. Bereswill, A. Pahl, P. Bellemann, W. Zeller, and K. Geider (1992). Appl. Environ. Microbiol. 58, (11), 3522–3526.Google Scholar
  48. 48.
    C. Zarrouk (1966). Contribution a l’etude d’une Cyanophycee. Influence de Divers Facteurs Physiques et Chimiques sur la croissance et la photosynthese de Spirulina mixima, Thesis. University of Paris, France.Google Scholar
  49. 49.
    B. Wang, Q. Liu, Y. Huang, Y. Yuan, Q. Ma, M. Du, T. Cai, and Y. Cai (2018) Evid. Based Complement. Altern. Med. 2018.Google Scholar
  50. 50.
    C. Qu, S. Yu, L. Luo, Y. Zhao, and Y. Huang (2013). Chem. Cent. J. 7, (1), 160.Google Scholar
  51. 51.
    A. Zhang, J. Lu, N. Zhang, D. Zheng, G. Zhang, and L. Teng (2010). Chem. Res. Chin. Univ. 26, (5), 798–802.Google Scholar
  52. 52.
    C. Zhao, X. Li, J. Miao, S. Jing, X. Li, L. Huang, and W. Gao (2017). Int. J. Biol. Macromol. 102, 847–856.Google Scholar
  53. 53.
    A. Bauer, W. Kirby, J. C. Sherris, and M. Turck (1966). Am. J. Clin. Pathol. 45, (4_ts), 493–496.Google Scholar
  54. 54.
    M. A. Maksoud, G. S. El-Sayyad, A. Ashour, A. I. El-Batal, M. S. Abd-Elmonem, H. A. Hendawy, E. Abdel-Khalek, S. Labib, E. Abdeltwab, and M. El-Okr (2018). Mater. Sci. Eng. C 92, 644–656.Google Scholar
  55. 55.
    A. Ashour, A. I. El-Batal, M. A. Maksoud, G. S. El-Sayyad, S. Labib, E. Abdeltwab, and M. El-Okr (2018). Particuology 40, 141–151.Google Scholar
  56. 56.
    J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, and A. A. Rahuman (2012). Mater. Lett. 71, 114–116.Google Scholar
  57. 57.
    M. A. Ansari, H. M. Khan, A. A. Khan, S. S. Cameotra, and R. Pal (2014). Appl. Nanosci. 4, (7), 859–868.Google Scholar
  58. 58.
    D. B. Duncan (1955). Biometrics 11, (1), 1–42.Google Scholar
  59. 59.
    H. Falkenstein, W. Zeller, and K. Geider (1989). Microbiology 135, (10), 2643–2650.Google Scholar
  60. 60.
    J.-B. Lee, T. Hayashi, K. Hayashi, U. Sankawa, M. Maeda, T. Nemoto, and H. Nakanishi (1998). J. Nat. Prod. 61, (9), 1101–1104.Google Scholar
  61. 61.
    N. Pugh, S. A. Ross, H. N. ElSohly, M. A. ElSohly, and D. S. Pasco (2001). Planta Med. 67, (08), 737–742.Google Scholar
  62. 62.
    F.-K. Liu, Y.-C. Hsu, M.-H. Tsai, and T.-C. Chu (2007). Mater. Lett. 61, (11–12), 2402–2405.Google Scholar
  63. 63.
    M. Składanowski, M. Wypij, D. Laskowski, P. Golińska, H. Dahm, and M. Rai (2017). J Clust. Sci. 28, (1), 59–79.Google Scholar
  64. 64.
    P. Balashanmugam and P. T. Kalaichelvan (2015). Int. J. Nanomed. 10, (Suppl 1), 87.Google Scholar
  65. 65.
    F. Yang, Q. Tang, X. Zhong, Y. Bai, T. Chen, Y. Zhang, Y. Li, and W. Zheng (2012). Int. J. Nanomed. 7, 835.Google Scholar
  66. 66.
    S. Link and M. A. El-Sayed (2003). Ann. Rev. Phys. Chem. 54, (1), 331–366.Google Scholar
  67. 67.
    I. Kouadri, A. Layachi, A. Makhlouf, and H. Satha (2018). Int. J. Polym. Anal. Char. 23, (4), 362–375.Google Scholar
  68. 68.
    R. Bryaskova, D. Pencheva, S. Nikolov, and T. Kantardjiev (2011). J. Chem. Biol. 4, (4), 185.Google Scholar
  69. 69.
    P. Belavi, G. Chavan, L. Naik, R. Somashekar, and R. Kotnala (2012). Mater. Chem. Phys. 132, (1), 138–144.Google Scholar
  70. 70.
    A. Gannoruwa, B. Ariyasinghe, and J. Bandara (2016). Catal. Sci. Technol. 6, (2), 479–487.Google Scholar
  71. 71.
    A. I. El-Batal, H. H. El-Hendawy, and A. H. Faraag (2018). BioTechnologia 98, (3), 225–243.Google Scholar
  72. 72.
    B. Sadeghi, M. Sadjadi, and A. Pourahmad (2008). Int. J. Nanosci. Nanotechnol. 4, (1), 3–12.Google Scholar
  73. 73.
    P. Kanmani, N. Yuvaraj, K. Paari, V. Pattukumar, and V. Arul (2011). Bioresour. Technol. 102, (7), 4827–4833.Google Scholar
  74. 74.
    Q.-L. Luo, Z.-H. Tang, X.-F. Zhang, Y.-H. Zhong, S.-Z. Yao, L.-S. Wang, C.-W. Lin, and X. Luo (2016). Int. J. Biol. Macromol. 89, 219–227.Google Scholar
  75. 75.
    R. Sun, J. Fang, A. Goodwin, J. Lawther, and A. Bolton (1998). Carbohydr. Polym. 37, (4), 351–359.Google Scholar
  76. 76.
    H. Song, M. He, C. Gu, D. Wei, Y. Liang, J. Yan, and C. Wang (2018). Polymers 10, (3), 292.Google Scholar
  77. 77.
    Z. Zhang, B. Zhao, and L. Hu (1996). J. Solid State Chem. 121, (1), 105–110.Google Scholar
  78. 78.
    H. El-Rafie, M. El-Rafie, and M. Zahran (2013). Carbohydr. Polym. 96, (2), 403–410.Google Scholar
  79. 79.
    A. Dmytryk, A. Saeid, and K. Chojnacka (2014). Sci. World J. 2014, 1–15. Scholar
  80. 80.
    I. Matai, A. Sachdev, P. Dubey, S. U. Kumar, B. Bhushan, and P. Gopinath (2014). Colloids Surf. B Biointerfaces 115, 359–367.Google Scholar
  81. 81.
    M. Hildebrand, P. Aldridge, and K. Geider (2006). Mol. Genet. Genomics 275, (3), 310–319.Google Scholar
  82. 82.
    K. Vrancken, M. Holtappels, H. Schoofs, T. Deckers, and R. Valcke (2013). Microbiology 159, (5), 823–832.Google Scholar
  83. 83.
    R. Žalnėravičius, A. Paškevičius, K. Mažeika, and A. Jagminas (2018). Appl. Surf. Sci. 435, 141–148.Google Scholar
  84. 84.
    C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P. K.-H. Tam, J.-F. Chiu, and C.-M. Che (2006). J. Proteome Res. 5, (4), 916–924.Google Scholar
  85. 85.
    M.F. Zawrah and S.I. Abd El-Moez (2011). Life Sci. J. 8, (4), 37–44.Google Scholar
  86. 86.
    S. Kumar, K. Tamura, and M. Nei (2004). Brief. Bioinform. 5, (2), 150–163.Google Scholar
  87. 87.
    J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman (2005). Nanotechnology 16, (10), 2346.Google Scholar
  88. 88.
    S. Sarkar, A. D. Jana, S. K. Samanta, and G. Mostafa (2007). Polyhedron 26, (15), 4419–4426.Google Scholar
  89. 89.
    A.I.M. Allahverdiyev, S. Emrah, B. Malahat, B.U. Cem, K. Cengiz, et al. (2011). Int. J. Nanomedicine 6, 2705–2714.Google Scholar
  90. 90.
    S. Krishnakumar and V. D. M. Bai (2015). Int. J. Tech Chem. Res. 1, 112–118.Google Scholar
  91. 91.
    M. Chahardooli, E. Khodadadi, and E. Khodadadi (2014). Int. J. Biosci. 4, 97–103.Google Scholar
  92. 92.
    A. Dzimitrowicz, A. Motyka-Pomagruk, P. Cyganowski, W. Babinska, D. Terefinko, P. Jamroz, E. Lojkowska, P. Pohl, and W. Sledz (2018). Nanomaterials 8, 751.Google Scholar
  93. 93.
    E. E. Hafez and S. S. Kabeil (2013). J. Pure Appl. Microbiol. 7, 35–42.Google Scholar
  94. 94.
    T. Mohammad and A. Abd El-Rahman (2015). Mycopath 13, (1), 1–6.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Botany and Microbiology Department, Faculty of ScienceAl-Azhar UniversityNasr City, CairoEgypt
  2. 2.Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT)Atomic Energy AuthorityCairoEgypt
  3. 3.Horticulture Research InstituteAgricultural Research Center (ARC)GizaEgypt
  4. 4.Plant Pathology Research InstituteAgricultural Research Center (ARC)GizaEgypt

Personalised recommendations