Selective Detection of Sub-hundred Picomolar Mercuric Ion in Aqueous Systems by Visible Spectrophotometry Using Gripe Water Functionalized Gold Nanoparticles

  • R. Anitha
  • G. R. RajarajeswariEmail author
Original Paper


A selective and sensitive spectrophotometric determination of Hg2+ was designed based on gripe water functionalized gold nanoparticles (AuNP). Gripe water was employed as both a reducing and a stabilizing agent for the synthesis of gold nanoparticles. The sugar moieties of gripe water were responsible for the reduction of auric ions to Au and the resultant nanoparticles possessing an average particle size of 16 nm were highly stable over a period of 1 year. The gripe water-functionalized gold nanoparticle system was highly sensitive in detecting Hg2+ ions in aqueous medium, with the limit of detection being as low as 0.05 nM. It was also highly selective of mercury even in presence of eleven different commonly associated cations. The efficacy of the nanoparticle sensor system in the analysis of mercury in real-time samples such as bottled, tap, lake and river water has also been evaluated to be good.

Graphical Abstract


Gripe water Gold nanoparticle sensor Amalgam Mercury Spectrophotometric determination 



The authors are thankful to Department of Science and Technology and University Grants Commission, Government of India for the sponsored analytical facilities at the Department of Chemistry, Anna University, Chennai through DST-FIST and UGC-SAP schemes. Ms. R. Anitha is thankful to DST, New Delhi for providing Junior Research Fellowship (JRF) under DST-PURSE scheme (DST Ref. No: 9500/PD2/2014). The authors acknowledge the help rendered by Dr. E. Kirubha and Dr. S. Pugazhendhi with respect to discussions on earlier report and characterization of materials.

Compliance with Ethical Standards

Conflict of interest

There are no conflicts to declare.


  1. 1.
    WHO, Mercury and Health Fact Sheet (WHO: Geneva, 2016). Accessed from
  2. 2.
    U.S. Environmental Protection Agency, National Primary Drinking Water Standards, EPA, 816-F-01–007, EPA, Washington, DC (2001).Google Scholar
  3. 3.
    G. Wang, C. Lim, L. Chen, H. Chon, J. Choo, J. Hong, and A. J. DeMello (2009). Anal. Bioanal. Chem. 394, 1827–1832.CrossRefGoogle Scholar
  4. 4.
    F. X. Han, W. D. Patterson, Y. Xia, B. B. Maruthi Sridhar, and Y. Su (2006). Water Air Soil Pollut. 170, 161–171.CrossRefGoogle Scholar
  5. 5.
    W. Lu, X. Qin, A. M. Asiri, A. O. Al-Youbi, and X. Sun (2013). J. Nanopart. Res. 15, 1344.CrossRefGoogle Scholar
  6. 6.
    H. Erxleben and J. Ruzicka (2005). Anal. Chem. 77, 5124–5128.CrossRefGoogle Scholar
  7. 7.
    N. Zhou, H. Chen, J. Li, and L. Chen (2013). Microchim. Acta 180, 493–499.CrossRefGoogle Scholar
  8. 8.
    L. Zhou, W. Xiong, and S. Liu (2015). J. Mater. Sci. 50, 769–776.CrossRefGoogle Scholar
  9. 9.
    Z. Chen, C. Zhang, H. Ma, T. Zhou, B. Jiang, M. Chen, and X. Chen (2015). Talanta 134, 603–606.CrossRefGoogle Scholar
  10. 10.
    S. M. Lin, S. Geng, N. Li, N. B. Li, and H. Q. Luo (2016). Talanta 151, 106–113.CrossRefGoogle Scholar
  11. 11.
    Y. Wang, F. Yang, and X. Yang (2010). ACS Appl. Mater. Interfaces 2, 339–342.CrossRefGoogle Scholar
  12. 12.
    Y. Zhou, H. Dong, L. Liu, M. Li, K. Xiao, and M. Xu (2014). Sens. Actuators B: Chem. 196, 106–111.CrossRefGoogle Scholar
  13. 13.
    G.-W. Wu, S.-B. He, H.-P. Peng, H.-H. Deng, A.-L. Liu, X.-H. Lin, X.-H. Xia, and W. Chen (2014). Anal. Chem. 86, 10955–10960.CrossRefGoogle Scholar
  14. 14.
    N. R. Devi, M. Sasidharan, and A. K. Sundramoorthy (2018). J. Electrochem. Soc. 165, (8), B3046–B3053.CrossRefGoogle Scholar
  15. 15.
    W. Huang, Y. Zhou, Y. Deng, and Y. He (2018). Phys. Chem. Chem. Phys. 20, 4347–4350.CrossRefGoogle Scholar
  16. 16.
    W. Huang, Y. Zhou, J. Du, Y. Deng, and Y. He (2018). Anal. Chem. 90, (3), 2384–2388.CrossRefGoogle Scholar
  17. 17.
    M. Zhao, Y. Tao, W. Huang, and Y. He (2018). Phys. Chem. Chem. Phys. 20, 28644.CrossRefGoogle Scholar
  18. 18.
    I. Capek (2015). J. Nanotechnol. Mater. Sci. 2, 1–18.CrossRefGoogle Scholar
  19. 19.
    Y. Zhou, W. Huang, and Y. He (2018). Sens. Actuators B 270, 187–191.CrossRefGoogle Scholar
  20. 20.
    K. D. Lee, P. C. Nagajyothi, T. V. M. Sreekanth, and S. Park (2015). J. Ind. Eng. Chem. 26, 67–72.CrossRefGoogle Scholar
  21. 21.
    M. Annadhasan, T. Muthukumarasamyvel, V. R. SankarBabu, and N. Rajendiran (2014). ACS Sustain. Chem. Eng. 2, 887–896.CrossRefGoogle Scholar
  22. 22.
    M. P. Patil, D. Ngabire, H. H. P. Thi, M.-D. Kim, and G.-D. Kim (2017). J. Clust. Sci. 28, 119–132.CrossRefGoogle Scholar
  23. 23.
    E. Kirubha and P. K. Palanisamy (2013). J. Nanosci. Nanotechnol. 13, 2289–2294.CrossRefGoogle Scholar
  24. 24.
    I. Blumenthal (2000). J. R. Soc. Med. 93, 172–174.CrossRefGoogle Scholar
  25. 25.
    E. Kirubha, K. Vishista, and P. K. Palanisamy (2015). Appl. Nanosci. 5, 777–786.CrossRefGoogle Scholar
  26. 26.
    Y. Zhao, L. Gui, and Z. Chen (2017). Sens. Actuators B 241, 262–267.CrossRefGoogle Scholar
  27. 27.
    V. K. T. Ngo, D. G. Nguyen, T. P. Huynhand, and Q. V. Lam (2015). Nanosci. Nanotechnol. 7, 035016.Google Scholar
  28. 28.
    W. Chansuvarn and A. Imyim (2012). Microchim. Acta 176, 57–64.CrossRefGoogle Scholar
  29. 29.
    H. Yu, D. Long, and W. Huang (2018). Sens. Actuators B 264, 164–168.CrossRefGoogle Scholar
  30. 30.
    R. M. Tripathi, R. K. Gupta, P. Singh, A. S. Bhadwal, A. Shrivastav, N. Kumar, and B. R. Shrivastav (2014). Sens. Actuators B 204, 637–646.CrossRefGoogle Scholar
  31. 31.
    L. Castro, M. L. Blázquez, F. González, J. A. Munoz, and A. Ballester (2010). Chem. Eng. J. 164, 92.CrossRefGoogle Scholar
  32. 32.
    C. G. Kumar and S. K. Mamidyala (2011). Biotechnol. Prog. 27, (5), 1455–1463.CrossRefGoogle Scholar
  33. 33.
    G. Sonavane, K. Tomoda, and K. Makino (2008). Colloids Surf. B 66, 274–280.CrossRefGoogle Scholar
  34. 34.
    C.-C. Huang and H.-T. Chang (2006). Anal. Chem. 78, 8332–8338.CrossRefGoogle Scholar
  35. 35.
    G. Sener, L. Uzun, and A. Denizli (2014). Anal. Chem. 86, 514–520.CrossRefGoogle Scholar
  36. 36.
    Y. R. Kim, R. K. Mahajan, J. S. Kim, and H. Kim (2010). ACS Appl. Mater. Interfaces 2, 292–295.CrossRefGoogle Scholar
  37. 37.
    L. Li, B. Li, Y. Qi, and Y. Jin (2009). Anal. Bioanal. Chem. 393, 2051–2057.CrossRefGoogle Scholar
  38. 38.
    K. Wu, B. Yang, X. Zhu, W. Chen, X. Luo, Z. Liu, X. Zhang, and Q. Liu (2018). New J. Chem. 42, 18749.CrossRefGoogle Scholar
  39. 39.
    Z. Chen, C. Zhang, Q. Gao, G. Wang, L. Tan, and Q. Liao (2015). Anal. Chem. 87, 10963–10968.CrossRefGoogle Scholar
  40. 40.
    K.-C. Noh, Y.-S. Nam, H.-J. Lee, and K.-B. Lee (2015). Analyst 140, 8209J.CrossRefGoogle Scholar
  41. 41.
    Y. Cheon and W. H. Park (2015). Int. J. Mol. Sci. 17, 2006.CrossRefGoogle Scholar
  42. 42.
    I. Chanda, R. Bordoloi, D. D. Chakraborty, P. Chakraborty, and S. R. C. Das (2017). J. Appl. Pharm. Sci. 7, 081–084.Google Scholar
  43. 43.
    W. Chansuvarn, T. Tuntulani, and A. Imyim (2015). Trends Anal. Chem. 65, 1–22.CrossRefGoogle Scholar
  44. 44.
    Y. He, F. Tian, J. Zhou, and B. Jiao (2019). Microchim. Acta 186, 19.CrossRefGoogle Scholar
  45. 45.
    H. Liu, Y.-N. Ding, B. Yang, Z. Liu, X. Zhang, and Q. Liu (2019). ACS Sustain. Chem. Eng. 6, (11), 14383–14393.CrossRefGoogle Scholar
  46. 46.
    Y. Yaling and Y. He (2019). Anal. Sci. 35, 159–163.CrossRefGoogle Scholar
  47. 47.
    M. Zhao, H. Yu, and Y. He (2019). Sens. Actuators: B Chem. 283, 329–333.CrossRefGoogle Scholar
  48. 48.
    J. Du, M. Zhao, W. Huang, Y. Deng, and Y. He (2018). Anal. Bioanal. Chem. 410, 4519–4526.CrossRefGoogle Scholar
  49. 49.
    Y. Gao, K. Wu, H. Li, W. Chen, M. Fu, K. Yue, X. Zhu, and Q. Liu (2018). Sens. Actuators: B Chem. 273, 1635–1639.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, College of Engineering, GuindyAnna UniversityChennaiIndia

Personalised recommendations