Advertisement

Antibacterial Activity of Alkaloids, Flavonoids, Saponins and Tannins Mediated Green Synthesised Silver Nanoparticles Against Pseudomonas aeruginosa and Bacillus subtilis

  • P. Raji
  • Antony V. SamrotEmail author
  • D. Keerthana
  • S. Karishma
Original Paper
  • 22 Downloads

Abstract

In this study, metabolites like tannin, saponin, alkaloids and flavonoids from Cassia alata, Euphorbia hirta, Thespesia populnea and Wrightia tinctoria were utilized for green synthesize of silver nanoparticles, where crude extracts were commonly used. The silver nanoparticles produced using the metabolites were crystalline and found to be spherical and rod shaped with size range between 17 and 30 nm. All the silver nanoparticles were effective against the microorganisms used in this study. Minimum inhibitory concentration of silver nanoparticles produced using flavonoid and tannin of E. hirta and saponin of C. alata, was found to be at 0.5 µg concentration against Pseudomonas aeruginosa and Bacillus subtilis. All the nanoparticles were able to disturb the cell membrane and released out internal protein and also showing impact on swarming motility of both the bacteria used in this study.

Keywords

Medicinal plants Alkaloids Flavonoids Saponins Tannins Silver nanoparticles Antibacterial activity 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    A. Bernhoft, A brief review on bioactive compounds in plants. Bioactive compounds in plants-benefits and risks for man and animals, in Proceedings: The Norwegian Academy of Science and Letters, Oslo, 13–14 November, vol. 50 (2008), pp. 11–17.Google Scholar
  2. 2.
    V. E. Tyler Herbs of Choice: The Therapeutic Use of Phytomedicinals (Pharmaceutical Products Press, London, 1994).Google Scholar
  3. 3.
    A. V. Samrot, N. Shobana, and R. Jenna (2018). Bionanoscience 8, 632–646.  https://doi.org/10.1007/s12668-018-0521-8.CrossRefGoogle Scholar
  4. 4.
    B. E. VanWyk and M. Wink Medicinal Plants of the World: An Illustrated Scientific Guide to Important (Medicinal Plants and their Uses Timber Press, Portland, 2004).Google Scholar
  5. 5.
    A. V. Samrot, P. Raji, A. J. Selvarani, and P. Nishanthini (2018). Biocatal. Agric. Biotechnol. 16, 253–270.CrossRefGoogle Scholar
  6. 6.
    T. T. Cushnie, B. Cushnie, and A. J. Lamb (2014). Int. J. Antimicrob. Agents 44, (5), 377–386.CrossRefGoogle Scholar
  7. 7.
    D. Mabhiza, T. Chitemerere, and S. Mukanganyama (2016). Int. J. Med. Chem. 2016, 6304163.Google Scholar
  8. 8.
    T. T. Cushnie and A. J. Lamb (2005). Int. J. Antimicrob. Agents 26, (5), 343–356.CrossRefGoogle Scholar
  9. 9.
    A. Scalbert (1991). Phytochemistry 30, (12), 3875–3883.CrossRefGoogle Scholar
  10. 10.
    N. Wafa, G. Sofiane, and K. Mouhamed (2016). Eur. J. Exp. Biol. 6, (3), 55–61.Google Scholar
  11. 11.
    M. Arabski, A. Węgierek-Ciuk, G. Czerwonka, A. Lankoff, and W. Kaca (2012). Biomed. Res. Int. 2012, 286216.Google Scholar
  12. 12.
    P. Avato, R. Bucci, A. Tava, C. Vitali, A. Rosato, Z. Bialy, and M. Jurzysta (2006). Phytother. Res. 20, (6), 454–457.CrossRefGoogle Scholar
  13. 13.
    S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, (1), 17–28.CrossRefGoogle Scholar
  14. 14.
    R. Mariselvam, A. J. A. Ranjitsingh, A. U. R. Nanthini, K. Kalirajan, C. Padmalatha, and P. M. Selvakumar (2014). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 129, 537–541.CrossRefGoogle Scholar
  15. 15.
    J. R. Nakkala, R. Mata, A. K. Gupta, and S. R. Sadras (2014). Eur. J. Med. Chem. 85, 784–794.CrossRefGoogle Scholar
  16. 16.
    Q. Sun, X. Cai, J. Li, M. Zheng, Z. Chen, and C. P. Yu (2014). Colloids Surf. A Physicochem. Eng. Asp. 444, 226–231.CrossRefGoogle Scholar
  17. 17.
    P. Banerjee, M. Satapathy, A. Mukhopahayay, and P. Das (2014). Bioresour. Bioprocess. 1, (1), 3.CrossRefGoogle Scholar
  18. 18.
    A.J. Harborne, in Phytochemical Methods a Guide to Modern Techniques of Plant Analysis. (Springer, Berlin, 1998).Google Scholar
  19. 19.
    S. Zeidan, A. Hijazi, H. Rammal, A. Kobaissi, and B. Badran (2014). World J. Pharm. Pharm. Sci. 3, (17), 1889–1898.Google Scholar
  20. 20.
    F. N. Ujowundu, A. I. Ukoha, A. O. Ojiako, and R. N. Nwaoguikpe (2015). Pharm. Anal. Acta. 6, 444.Google Scholar
  21. 21.
    B. O. Obadoni and P. O. Ochuko (2002). Global J. Pure Appl. Sci. 8, 203–208.Google Scholar
  22. 22.
    A. Saravanakumar, M. M. Peng, M. Ganesh, J. Jayaprakash, M. Mohankumar, and H. T. Jang (2017). Artif. Cells Nanomed. Biotechnol. 45, (6), 1165–1171.CrossRefGoogle Scholar
  23. 23.
    A. R. De Araujo, P. V. Quelemes, M. L. G. Perfeito, L. I. de Lima, M. C. Sá, P. H. M. Nunes, and J. R. D. S. de Almeida (2015). Ann. Clin. Microbiol. Antimicrob. 14, (1), 25.CrossRefGoogle Scholar
  24. 24.
    A. Ugurlu, A. K. Yagci, S. Ulusoy, B. Aksu, and G. Bosgelmez-Tinaz (2016). Asian Pac. J. Trop. Biomed. 6, (8), 698–701.CrossRefGoogle Scholar
  25. 25.
    S. Gunalan, R. Sivaraj, and V. Rajendran (2012). Prog. Nat. Sci. Mat. Int. 22, (6), 693–700.CrossRefGoogle Scholar
  26. 26.
    K. Maruthai, K. Vallayyachari, T. Ravibalan, S. A. Philip, A. V. Samrot, and M. Muthuraj (2017). Prog. Biosci. Bioeng. 1, (1), 29–35.CrossRefGoogle Scholar
  27. 27.
    R. Das, S. S. Nath, D. Chakdar, G. Gope, and R. Bhattacharjee (2009). J. Nanotechnol. 5, 1–6.Google Scholar
  28. 28.
    S. Jain and M. S. Mehata (2017). Sci. Rep. 7, (1), 15867.CrossRefGoogle Scholar
  29. 29.
    A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, and R. Zboril (2006). J. Phys. Chem. B 110, (33), 16248–16253.CrossRefGoogle Scholar
  30. 30.
    S. A. Gaddam, V. S. Kotakadi, D. S. Gopal, Y. S. Rao, and A. V. Reddy (2014). J. Nanostruct. Chem. 4, (1), 82.CrossRefGoogle Scholar
  31. 31.
    G. Bhumi, M. Lingarao, and N. Savithramma (2013). Ind. Stre Resj J. 3, (3), 1–7.Google Scholar
  32. 32.
    R. Desai, V. Mankad, S. K. Gupta, and P. K. Jha (2012). Nanosci. Nanotechnol. Lett. 4, (1), 30–34.CrossRefGoogle Scholar
  33. 33.
    P. B. Raja, A. A. Rahim, A. K. Qureshi, and K. Awang (2006). Mater. Sci.-Pol. 32, (3), 408–413.CrossRefGoogle Scholar
  34. 34.
    B. Ajitha, Y. A. K. Reddy, and P. S. Reddy (2015). Mater. Sci. Eng. C 49, 373–381.CrossRefGoogle Scholar
  35. 35.
    K. Anandalakshmi, J. Venugobal, and V. Ramasamy (2016). Appl. Nanosci. 6, (3), 399–408.CrossRefGoogle Scholar
  36. 36.
    M. R. Shaik, M. Khan, M. Kuniyil, A. Al-Warthan, H. Z. Alkhathlan, M. R. H. Siddiqui, J. P. Shaik, A. Ahamed, A. Mahmood, M. Khan, and S. F. Adil (2018). Sustainability 18, (10), 913.CrossRefGoogle Scholar
  37. 37.
    B. K. Mehta, M. Chhajlani, and B. D. Shrivastava (2017). IOP Conf. Ser. J. Phys. 836, 012050.CrossRefGoogle Scholar
  38. 38.
    P. Senthilkumar, S. Rashmitha, P. Veera, C. V. Ignatious, C. SaiPriya, and A. V. Samrot (2018). J. Pure Appl. Microbiol. 12, (02), 969–974.CrossRefGoogle Scholar
  39. 39.
    F. J. Osonga, A. Akgul, I. Yazgan, A. Akgul, R. Ontman, V. M. Kariuki, and O. A. Sadik (2018). RSC Adv. 8, (9), 4649–4661.CrossRefGoogle Scholar
  40. 40.
    R. Srinivasan, L. Vigneshwari, T. Rajavel, R. Durgadevi, A. Kannappan, K. Balamurugan, and A. V. Ravi (2018). Environ. Sci. Pollut. Res. 25, (11), 10538–10554.CrossRefGoogle Scholar
  41. 41.
    V. Gopinath, S. Priyadarshini, M. F. Loke, J. Arunkumar, E. Marsili, D. MubarakAli, and J. Vadivelu (2015). Arab. J. Chem. 10, (8), 1107–1117.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiotechnologySathyabama Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Biomedical Sciences, Faculty of Medicine and Biomedical SciencesMAHSA UniversityJenjaromMalaysia

Personalised recommendations