Advertisement

Theoretical Study on the Growth Behavior and Photoelectron Spectroscopy of Lanthanum-Doped Silicon Clusters LaSi n 0/− (n = 6–20)

  • Yaqing Chen
  • Yuming Liu
  • Suying Li
  • Jucai YangEmail author
Original Paper
  • 50 Downloads

Abstract

The growth behavior and electronic properties of the lowest energy structures of neutral LaSin (n = 6–20) and their anions were explored by means of the ABCluster global structure searching strategy combined with the mPW2PLYP double-hybrid density functional. The results revealed that the growth behavior of the lowest energy structures of anionic LaSi n (n = 10–20) clusters choose La-linked two silicon subclusters to La-encapsulated in silicon cages. For neutral LaSin (n = 6–20), the growth behavior of the lowest energy structures from substitutional structure to linked motifs and finally to encapsulated configurations occurs at n = 14 and 20, respectively. The simulated photoelectron spectroscopy, adiabatic electron affinities, vertical detachment energies, relative stability and HOMO–LUMO energy gaps were presented. Analyses of HOMO–LUMO energy gaps, relative stability, and chemical bonding reveal that the LaSi20 possesses ideal thermodynamic and chemical stability in a high Ih-symmetry endohedral motif, which can turn it into suitable constitutional units for cluster-assembled nanomaterials.

Keywords

The lowest energy structure of La-doped Si clusters Structural growth behavior Simulated photoelectron spectroscopy Relative stability mPW2PLYP 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21863007 and 21263010), by Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Gran No. NMGIRT-A1603), and by Natural Science Foundation of Inner Mongolia (Grant No. 2016MS0307).

Supplementary material

10876_2019_1541_MOESM1_ESM.docx (1016 kb)
Supplementary material 1 (DOCX 1015 kb)

References

  1. 1.
    M. F. Jarrold (1991). Science 252, 1085–1092.CrossRefGoogle Scholar
  2. 2.
    E. C. Honea, A. Ogura, D. R. Peale, C. Félix, C. A. Murray, K. Raghavachari, W. O. Sprenger, M. F. Jarrold, and W. L. Brown (1999). J. Chem. Phys. 110, 12161–12172.CrossRefGoogle Scholar
  3. 3.
    I. Vasiliev, S. Öğüt, and J. R. Chelikowsky (1997). Phys. Rev. Lett. 78, 4805–4808.CrossRefGoogle Scholar
  4. 4.
    S. Nigam, C. Majumder, and S. K. Kulshreshtha (2006). J. Chem. Phys. 125, 074303.CrossRefGoogle Scholar
  5. 5.
    X. L. Zhu, X. C. Zeng, and Y. A. Lei (2004). J. Chem. Phys. 120, 8985–8995.CrossRefGoogle Scholar
  6. 6.
    J. C. Yang, W. G. Xu, and W. S. Xiao (2005). J. Mol. Struct. Theochem. 719, 89–102.CrossRefGoogle Scholar
  7. 7.
    L. P. Ding, F. H. Zhang, Y. S. Zhu, C. Lu, X. Y. Kuang, J. Lv, and P. Shao (2015). Sci. Rep. 5, 15951.CrossRefGoogle Scholar
  8. 8.
    W. G. Sun, J. J. Wang, C. Lu, X. X. Xia, X. Y. Kuang, and A. Hermann (2017). Inorg. Chem. 56, 1241–1248.CrossRefGoogle Scholar
  9. 9.
    Y. Y. Jin, Y. H. Tian, X. Y. Kuang, C. Z. Zhang, C. Lu, J. J. Wang, J. Lv, L. P. Ding, and M. Ju (2015). J. Phys. Chem. A 119, 6738–6745.CrossRefGoogle Scholar
  10. 10.
    Y. Y. Jin, G. Maroulis, X. Y. Kuang, L. P. Ding, C. Lu, J. J. Wang, J. Lv, C. Z. Zhang, and M. Ju (2015). Phys. Chem. Chem. Phys. 17, 13590–13597.CrossRefGoogle Scholar
  11. 11.
    X. D. Xing, A. Hermann, X. Y. Kuang, M. Ju, C. Lu, Y. Y. Jin, X. X. Xia, and G. Maroulis (2016). Sci. Rep. 6, 19656.CrossRefGoogle Scholar
  12. 12.
    B. L. Chen, W. G. Sun, X. Y. Kuang, C. Lu, X. X. Xia, H. X. Shi, and G. Maroulis (2018). Inorg. Chem. 57, 343–350.CrossRefGoogle Scholar
  13. 13.
    P. Shao, B. L. Chen, L. P. Ding, D. B. Luo, C. Lu, and X. Y. Kuang (2017). Phys. Chem. Chem. Phys. 19, 25289–25297.CrossRefGoogle Scholar
  14. 14.
    M. Ju, J. Lv, X. Y. Kuang, L. P. Ding, C. Lu, J. J. Wang, Y. Y. Jin, and G. Maroulis (2015). RSC Adv. 5, 6560–6570.CrossRefGoogle Scholar
  15. 15.
    L. P. Ding, P. Shao, C. Lu, F. H. Zhang, L. Ding, and T. L. Yuan (2016). Phys. Chem. Chem. Phys. 18, 23296–23303.CrossRefGoogle Scholar
  16. 16.
    M. Ohara, K. Koyasu, A. Nakajima, and K. Kaya (2003). Chem. Phys. Lett. 371, 490–497.CrossRefGoogle Scholar
  17. 17.
    K. Koyasu, J. Atobe, S. Furuse, and A. Nakajima (2008). J. Chem. Phys. 129, 214301.CrossRefGoogle Scholar
  18. 18.
    A. Grubisic, Y. J. Ko, H. P. Wang, and K. H. Bowen (2009). J. Am. Chem. Soc. 131, 10783–10790.CrossRefGoogle Scholar
  19. 19.
    A. J. Kenyon (2005). Semicond. Sci. Technol. 20, R65–R84.CrossRefGoogle Scholar
  20. 20.
    H. Tsunoyama, M. Shibuta, M. Nakaya, T. Eguchi, and A. Nakajima (2018). Acc. Chem. Res. 51, 1735–1745.CrossRefGoogle Scholar
  21. 21.
    X. X. Xia, A. Hermann, X. Y. Kuang, Y. Y. Jin, C. Lu, and X. D. Xing (2016). J. Phys. Chem. C 120, 677–684.CrossRefGoogle Scholar
  22. 22.
    R. N. Zhao, Y. H. Yuan, J. G. Han, and Y. H. Duan (2014). RSC Adv. 4, 59331–59337.CrossRefGoogle Scholar
  23. 23.
    R. N. Zhao and J. G. Han (2014). RSC Adv. 4, 64410–64418.CrossRefGoogle Scholar
  24. 24.
    T. G. Liu, W. Q. Zhang, and Y. L. Li (2014). Front. Phys. 9, 210–218.CrossRefGoogle Scholar
  25. 25.
    C. G. Li, L. J. Pan, P. Shao, L. P. Ding, H. T. Feng, D. B. Luo, and B. Liu (2015). Theor. Chem. Acc. 134, 34.CrossRefGoogle Scholar
  26. 26.
    J. C. Yang, J. Wang, and Y. R. Hao (2015). Theor. Chem. Acc. 134, 81.CrossRefGoogle Scholar
  27. 27.
    X. H. Xie, D. S. Hao, Y. M. Liu, and J. C. Yang (2015). Comput. Theor. Chem. 1074, 1–8.CrossRefGoogle Scholar
  28. 28.
    X. H. Xie, D. S. Hao, and J. C. Yang (2015). Chem. Phys. 461, 11–19.CrossRefGoogle Scholar
  29. 29.
    R. N. Zhao, R. Chen, Y. H. Yuan, F. Gu, and J. G. Han (2016). J. Chem. Sci. 128, 365–371.CrossRefGoogle Scholar
  30. 30.
    Z. Lenčéš, L. Benco, J. Madejová, Y. Zhou, L. Kipsová, and K. Hirao (2008). J. Eur. Ceram. Soc. 28, 1917–1922.CrossRefGoogle Scholar
  31. 31.
    H. Yu, L. L. Wang, J. L. Everaert, Y. L. Jiang, D. Mocuta, N. Horiguchi, N. Collaert, and K. D. Meyer (2017). IEEE Electron Device Lett. 38, 843–846.CrossRefGoogle Scholar
  32. 32.
    Q. Peng and J. Shen (2008). J. Chem. Phys. 128, 084711.CrossRefGoogle Scholar
  33. 33.
    T. T. Cao, X. J. Feng, L. X. Zhao, X. Liang, Y. M. Lei, and Y. H. Luo (2008). Eur. Phys. J. D 49, 343–351.CrossRefGoogle Scholar
  34. 34.
    D. B. Zhang and J. Shen (2004). J. Chem. Phys. 120, 5104–5109.CrossRefGoogle Scholar
  35. 35.
    Y. M. Liu, J. C. Yang, and L. Cheng (2018). Inorg. Chem. 57, 12934–12940.CrossRefGoogle Scholar
  36. 36.
    S. He and J. C. Yang (2017). Theor. Chem. Acc. 136, 93.CrossRefGoogle Scholar
  37. 37.
    H. M. Ning, Y. S. Gu, L. Cheng, and J. C. Yang (2018). Chin. J. Struct. Chem. 37, 854–870.Google Scholar
  38. 38.
    J. C. Yang, Y. T. Feng, X. H. Xie, H. W. Wu, and Y. M. Liu (2016). Theor. Chem. Acc. 135, 204.CrossRefGoogle Scholar
  39. 39.
    Y. T. Feng, J. C. Yang, and Y. M. Liu (2016). Theor. Chem. Acc. 135, 258.CrossRefGoogle Scholar
  40. 40.
    L. Y. Hou, J. C. Yang, and Y. M. Liu (2017). J. Mol. Model. 23, 117.CrossRefGoogle Scholar
  41. 41.
    J. Zhang and M. Dolg (2015). Phys. Chem. Chem. Phys. 17, 24173–24181.CrossRefGoogle Scholar
  42. 42.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865–3868.CrossRefGoogle Scholar
  43. 43.
    M. Dolg, H. Stoll, and H. Preuss (1993). Theor. Chim. Acta. 85, 441–450.CrossRefGoogle Scholar
  44. 44.
    M. Dolg, H. Stoll, A. Savin, and H. Preuss (1989). Theor. Chim. Acta. 75, 173–194.CrossRefGoogle Scholar
  45. 45.
    X. Y. Cao and M. Dolg (2001). J. Chem. Phys. 115, 7348–7355.CrossRefGoogle Scholar
  46. 46.
    D. E. Woon and T. H. D. Jr (1993). J. Chem. Phys. 98, 1358–1371.CrossRefGoogle Scholar
  47. 47.
    T. Schwabe and S. Grimme (2006). Phys. Chem. Chem. Phys. 8, 4398–4401.CrossRefGoogle Scholar
  48. 48.
    J. Akola, M. Manninen, H. Häkkinen, U. Landman, X. Li, and L. S. Wang (1999). Phys. Rev. B 60, R11297.CrossRefGoogle Scholar
  49. 49.
    D. J. Tozer and N. C. Handy (1998). J. Chem. Phys. 109, 10180–10189.CrossRefGoogle Scholar
  50. 50.
    T. Lu and F. W. Chen (2012). J. Comput. Chem. 33, 580–592.CrossRefGoogle Scholar
  51. 51.
    D. Y. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys. 10, 5207–5217.CrossRefGoogle Scholar
  52. 52.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian 09, Revision C.01 (Gaussian Inc, Wallingford, CT, 2010).Google Scholar
  53. 53.
    Q. Lu and K. A. Peterson (2016). J. Chem. Phys. 145, 054111.CrossRefGoogle Scholar
  54. 54.
    B. A. Hess (1985). Phys. Rev. A 32, 756–763.CrossRefGoogle Scholar
  55. 55.
    B. A. Hess (1986). Phys. Rev. A 33, 3742–3748.CrossRefGoogle Scholar
  56. 56.
    G. Jansen and B. A. Hess (1989). Phys. Rev. A 39, 6016–6017.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yaqing Chen
    • 1
  • Yuming Liu
    • 2
  • Suying Li
    • 1
  • Jucai Yang
    • 1
    • 2
    Email author
  1. 1.School of Energy and Power EngineeringInner Mongolia University of TechnologyHohhotPeople’s Republic of China
  2. 2.School of Chemical EngineeringInner Mongolia University of Technology and Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry SimulationHohhotPeople’s Republic of China

Personalised recommendations