Solvothermal Syntheses, Crystal Structures and Magnetic Properties of Two Nickel Cubane-Type Cluster Complexes

  • Chengchen Wu
  • Xiao Zheng
  • Guanghui Chen
  • Zhao Chen
  • Yu XiaoEmail author


Two novel tetra-nuclear clusters, [Ni4(HL1)3(μ3-O)(H2O)3]·C2H5OH·H2O (1) and [Ni4(HL2)3 (μ3-O)(H2O)3]·3H2O (2, H3L1 = (E)-2-((2-hydroxy-3-methoxybenzylidene)amino)-2-methylpropane- 1,3-diol; H3L2 = (E)-2-((5-bromo-2-hydroxybenzylidene)amino)-2-methylpropane-1,3-diol), were synthesized by a solvothermal method and characterized by elemental analysis, thermogravimetric analysis, infrared spectroscopy, and singlecrystal X-ray diffractometry. The complexes 1 and 2 revealed similar cubane-type [Ni4O4] structures, which were connected alternately by three hydroxyls from different Schiff base ligands and one μ3-O. Hirshfeld surface analysis revealed that H···H, C···H, and O···H interactions were the main intermolecular interactions. Magnetic properties reveal that the {Ni4O4} cores display dominant ferromagnetic interactions from the nature of the binding modes through μ3-O.


Cubane-type Structure Hirsheld surface analysis Magnetic properties 



This work was supported by the Nature Science Foundation of China (No. 51569008), Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment and Program of the Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi (No. GXYSXTZX2017-II-3).

Supplementary material

10876_2019_1515_MOESM1_ESM.docx (808 kb)
Supplementary material 1 (DOCX 808 kb)


  1. 1.
    C. Zhang, X. D. Ma, Z. H. Chen, S. H. Zhang, and H. Hai (2017). J. Cluster. Sci. 28, 3241.CrossRefGoogle Scholar
  2. 2.
    G. Lemercier, M. Four, and S. Chevreux (2018). Coordin. Chem. Rev. 368, 1.CrossRefGoogle Scholar
  3. 3.
    S.-H. Zhang, Y. D. Zhang, H. H. Zou, J. J. Guo, H. P. Li, Y. Song, and H. Liang (2013). Inorg. Chim. Acta 396, 119.CrossRefGoogle Scholar
  4. 4.
    Z. Chen, Y. Fan, J. Wang, L. Yang, and S. Zhang (2018). ChemistrySelect 3, 9841.CrossRefGoogle Scholar
  5. 5.
    H. Chen, Z. G. Gu, S. Mirza, S. H. Zhang, and J. Zhang (2018). J. Mater. Chem. A. 6, 7175.CrossRefGoogle Scholar
  6. 6.
    S. Montanel-Pérez, R. P. Herrera, A. Laguna, M. D. Villacampa, and M. C. Gimeno (2015). Dalton Trans. 44, 9052.CrossRefGoogle Scholar
  7. 7.
    S. Zhang, Y. Hua, Z. Chen, S. Zhang, and H. Hai (2018). Inorg. Chim. Acta. 471, 530.CrossRefGoogle Scholar
  8. 8.
    A. Ramdass, V. Sathish, E. Babu, M. Velayudham, P. Thanasekaran, and S. Rajagopal (2017). Coordin. Chem. Rev. 343, 278.CrossRefGoogle Scholar
  9. 9.
    Y. Jia and J. Li (2014). Chem. Rev. 115, 1597.CrossRefGoogle Scholar
  10. 10.
    M. Andruh (2015). Dalton Trans. 44, 16633.CrossRefGoogle Scholar
  11. 11.
    M. Köse, G. Ceyhan, M. Tümer, I. Demirtas, I. Gönül, and V. McKee (2015). Spectrochim. Acta A. 137, 477.CrossRefGoogle Scholar
  12. 12.
    H. Sun, J. Zhang, Y. Cai, W. Liu, X. Zhang, Y. Dong, and Y. Li (2017). Polyhedron 125, 135.CrossRefGoogle Scholar
  13. 13.
    F. Evangelisti, R. Güttinger, R. Moré, S. Luber, and G. R. Patzke (2013). J. Am. Chem. Soc. 135, 18734.CrossRefGoogle Scholar
  14. 14.
    H.-R. Wen, S.-J. Liu, X.-R. Xie, J. Bao, and J.-L. Chen (2015). Inorg. Chim. Acta 435, 274.CrossRefGoogle Scholar
  15. 15.
    A. Banerjee and S. Chattopadhyay (2019). Polyhedron 159, (1), 1.CrossRefGoogle Scholar
  16. 16.
    K. Chakarawet, P. C. Bunting, and J. R. Long (2018). J. Am. Chem. Soc. 140, (6), 2058–2061.CrossRefGoogle Scholar
  17. 17.
    K. Griffiths, V. N. Dokorou, J. Spencer, A. Abdul-Sada, A. Vargas, and G. E. Kostakis (2016). CrystEngComm. 18, 704.CrossRefGoogle Scholar
  18. 18.
    D. Alezi, A. M. P. Peedikakkal, Ł. J. Weseliński, V. Guillerm, Y. Belmabkhout, A. J. Cairns, and M. Eddaoudi (2015). J. Am. Chem. Soc. 137, 5421.CrossRefGoogle Scholar
  19. 19.
    E. Mirzadeh, K. Akhbari, A. Phuruangrat, and F. Costantino (2017). Ultraso. Sonochem. 35, 382.CrossRefGoogle Scholar
  20. 20.
    A. Ghisolfi, C. Fliedel, P. de Frémont, and P. Braunstein (2017). Dalton Trans. 46, 5571.CrossRefGoogle Scholar
  21. 21.
    X. Y. Zheng, X. J. Kong, Z. Zheng, L. S. Long, and L. S. Zheng (2018). Acc. Chem. Res. 51, 517.CrossRefGoogle Scholar
  22. 22.
    K. Wang, Z. L. Chen, H. H. Zou, S. H. Zhang, Y. Li, X. Q. Zhang, and F. P. Liang (2018). Dalton Trans. 47, 2337.CrossRefGoogle Scholar
  23. 23.
    X. L. Li, F. C. Li, X. L. Zhang, Y. F. Liu, A. L. Wang, J. F. Tian, and H. P. Xiao (2015). Synth. Met. 209, 220.CrossRefGoogle Scholar
  24. 24.
    S. H. Zhang, R. X. Zhao, G. Li, H. Y. Zhang, C. L. Zhang, and G. Muller (2014). RSC Adv. 4, 54837.CrossRefGoogle Scholar
  25. 25.
    X. Q. Song, P. P. Liu, Y. A. Liu, J. J. Zhou, and X. L. Wang (2016). Dalton Trans. 45, 8154.CrossRefGoogle Scholar
  26. 26.
    J. Gao, C. Huang, Y. Lin, P. Tong, and L. Zhang (2016). J. Chromatogr. A. 1436, 1.CrossRefGoogle Scholar
  27. 27.
    C. P. Raptopoulou, A. N. Papadopoulos, D. A. Malamatari, E. Ioannidis, G. Moisdis, A. Terzis, and D. P. Kessissoglou (1998). Inorg. Chim. Acta. 272, 283.CrossRefGoogle Scholar
  28. 28.
    D. P. Kessissoglou, M. L. Kirk, M. S. Lah, X. Li, C. Raptopoulou, W. E. Hatfield, and V. L. Pecoraro (1992). Inorg. Chem. 31, 5424.CrossRefGoogle Scholar
  29. 29.
    D. A. Malamatari, P. Hitou, A. G. Hatzidimitriou, F. E. Inscore, A. Gourdon, M. L. Kirk, and D. P. Kessissoglou (1995). Inorg. Chem. 34, 2493.CrossRefGoogle Scholar
  30. 30.
    M. Dey, C. P. Rao, P. K. Saarenketo, and K. Rissanen (2002). Inorg. Chem. Commun. 5, 380.CrossRefGoogle Scholar
  31. 31.
    T. R. Barman, M. Sutradhar, M. G. B. Drew, and E. Rentschler (2013). Polyhedron. 51, 192.CrossRefGoogle Scholar
  32. 32.
    D. P. Kessissoglou, C. P. Raptopoulou, E. G. Bakalbassis, A. Terzis, and J. Mrozinski (1992). Inorg. Chem. 31, 4339.CrossRefGoogle Scholar
  33. 33.
    G. M. Sheldrick (2015). Acta. Cryst. C71, 3.Google Scholar
  34. 34.
    J. J. McKinnon, M. A. Spackman, and A. S. Mitchell (2004). Acta Cryst. 60, 627.CrossRefGoogle Scholar
  35. 35.
    F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor (1987). J. Chem. Soc. Perkin Trans. 2, S1.CrossRefGoogle Scholar
  36. 36.
    J. Wang, C. Feng, C. M. Ge, S. Zhang, and H. Hai (2016). J. Cluster Sci. 27, 2001.CrossRefGoogle Scholar
  37. 37.
    L. Liang, W. Li, Y. Sun, M. Li, X. Xu, T. Wu, and S. Xie (2017). J. Cluster Sci. 29, 151.CrossRefGoogle Scholar
  38. 38.
    J. M. Clemente-Juan, B. Chansou, B. Donnadieu, and J. P. Tuchagues (2000). Inorg. Chem. 39, 5515.CrossRefGoogle Scholar
  39. 39.
    K. E. R. Marriott, L. Bhaskaran, C. Wilson, M. Medarde, S. T. Ochsenbein, S. Hill, and M. Murrie (2015). Chem. Sci. 6, 6823.CrossRefGoogle Scholar
  40. 40.
    M. A. Lemes, G. Brunet, A. Pialat, L. Ungur, I. Korobkov, and M. Murugesu (2017). Chem. Commun. 53, 8660.CrossRefGoogle Scholar
  41. 41.
    Q. L. Zhang, Z. L. Wu, H. Xu, B. Zhai, Y. F. Wang, G. W. Feng, and Y. L. Huang (2016). Z. Anorg. Allg. Chem. 642, 414.CrossRefGoogle Scholar
  42. 42.
    S. Karmakar and S. Khanra (2014). CrystEngComm. 16, 2371.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chengchen Wu
    • 1
  • Xiao Zheng
    • 1
  • Guanghui Chen
    • 1
  • Zhao Chen
    • 1
  • Yu Xiao
    • 1
    Email author
  1. 1.Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst AreaGuilin University of TechnologyGuilinPeople’s Republic of China

Personalised recommendations