A New 2-D Organometallic Framework Constructed with Delocalizing π Electronic Trinuclear Units

  • Lingling ZhengEmail author
  • Ruichong Yang
  • Aiju Zhou
  • Sheng Hu
Original Paper


A novel Cu(II)–Ag(I) organometallic framework [Ag3(H2O)2(NO3)6{Cu3(OH)(pz)3(Hpz)1.5(H2O)0.5}2](NO3)·1.5 H2O (1) was obtained from the reaction of copper salt, pyrazole and silver salt at mild condition. This complex is a 2-D organometallic layer, which consisted by the trinuclear Cu 3 II 3–OH)(pz)3 clusters through rare Ag–π coordination bond, Ag–μ2–NO3, as well as weak Cu–O interaction. The magnetic property is also studied.


Copper(II) Organometallic framework Ag–π coordination Cluster 



This work was supported by the Science Foundation of Guangdong Province (2017A030313072, 2016A030313619) and the Scientific Research Project of Guangzhou Municipal Universities (1201620100). We also thank Prof. Ming-Liang Tong from School of Chemistry of Sun Yet-Sen University for his help in X-ray structural analysis.

Supplementary material

10876_2019_1513_MOESM1_ESM.docx (101 kb)
CCDC 632291 contains the supplementary crystallographic data for 1. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via (DOCX 100 kb)


  1. 1.
    Y. Cui, Y. Yue, G. Qian, and B. Chen (2012). Chem. Rev. 112, 1126–1162.CrossRefGoogle Scholar
  2. 2.
    J. Zhao, G. H. Zhu, L. Q. Xie, Y. S. Wu, H. L. Wu, A. J. Zhou, Z. Y. Wu, J. Wang, Y. C. Chen, and M. L. Tong (2015). Dalton Trans. 44, 14424–14435.CrossRefGoogle Scholar
  3. 3.
    H. Y. Wang, J. Y. Ge, C. Hua, C. Q. Jiao, Y. Wu, C. F. Leong, D. M. D’Alessandro, T. Liu, and J. L. Zuo (2017). Angew. Chem. Int. Ed. 56, 5465–5470.CrossRefGoogle Scholar
  4. 4.
    C. Cao, S. J. Liu, S. L. Yao, T. F. Zheng, Y. Q. Chen, J. L. Chen, and H. R. Wen (2017). Cryst. Growth Des. 17, 4757–4765.CrossRefGoogle Scholar
  5. 5.
    M. Yoon, R. Srirambalaji, and K. Kim (2012). Chem. Rev. 112, 1196–1231.CrossRefGoogle Scholar
  6. 6.
    X. J. Liu, Y. H. Zhang, Z. Chang, A. L. Li, D. Tian, Z. Q. Yao, Y. Y. Jia, and X. H. Bu (2016). Inorg. Chem. 55, 7326–7328.CrossRefGoogle Scholar
  7. 7.
    Y. H. Kang, X. D. Liu, N. Yan, Y. Jiang, X. Q. Liu, L. B. Sun, and J. R. Li (2016). J. Am. Chem. Soc. 138, 6099–6102.CrossRefGoogle Scholar
  8. 8.
    P. Q. Liao, N. Y. Huang, J. P. Zhang, and X. M. Chen (2017). Science 356, 1193–1196.CrossRefGoogle Scholar
  9. 9.
    X. Z. Lian, Y. Fang, E. Joseph, Q. Wang, J. L. Li, S. Banerjee, C. Lollar, X. Wang, and H. C. Zhou (2017). Chem. Soc. Rev. 46, 3386–3401.CrossRefGoogle Scholar
  10. 10.
    S. Yuan, Y. P. Chen, J. S. Lu, W. G. Lu, L. F. Zou, Q. Zhang, X. Wang, X. Sun, and H. C. Zhou (2017). J. Am. Chem. Soc. 138, 8912–8919.CrossRefGoogle Scholar
  11. 11.
    N. Stock and S. Biswas (2012). Chem. Rev. 112, 933–969.CrossRefGoogle Scholar
  12. 12.
    Q. Chen, Z. Chang, W. C. Song, H. Song, H. B. Song, T. L. Hu, and X. H. Bu (2013). Angew. Chem. Int. Ed. 52, 11550–11553.CrossRefGoogle Scholar
  13. 13.
    J. Zhao, L. Q. Xie, Y. M. Ma, A. J. Zhou, W. Dong, J. Wang, Y. C. Chen, and M. L. Tong (2014). CrystEngComm. 16, 10006–10016.CrossRefGoogle Scholar
  14. 14.
    M. Oh, G. B. Carpenter, and D. A. Sweigart (2004). Acc. Chem. Res. 37, 1–11.CrossRefGoogle Scholar
  15. 15.
    D. Braga, F. Grepioni, and G. R. Desiraju (1998). Chem. Rev. 98, 1375–1405.CrossRefGoogle Scholar
  16. 16.
    M. Munakata, L. P. Wu, and G. L. Ning (2000). Coord. Chem. Rev. 198, 171–203.CrossRefGoogle Scholar
  17. 17.
    S. L. Zheng, M. L. Tong, S. D. Tan, Y. Wang, J. X. Shi, Y. X. Tong, H. K. Lee, and X. M. Chen (2001). Organometallics 20, 5319–5325.CrossRefGoogle Scholar
  18. 18.
    Y. B. Dong, Y. Geng, J. P. Ma, and R. Q. Huang (2006). Organometallics 25, 447–462.CrossRefGoogle Scholar
  19. 19.
    L. Mathivathanan, M. Rivera-Carrillo, and R. G. Raptis (2012). Inorg. Chim. Acta 391, 201–205.CrossRefGoogle Scholar
  20. 20.
    G. Mezei, M. Rivera-Carrillo, and R. G. Raptis (2004). Inorg. Chim. Acta 357, 3721–3732.CrossRefGoogle Scholar
  21. 21.
    M. Alsalme, R. A. Ghazzali, K. Khan, and J. Al-Farhan (2014). Reedijk. Polyhedron 75, 64–67.CrossRefGoogle Scholar
  22. 22.
    H. Zhang, Y. Lu, Z. M. Zhang, and E. B. Wang (2012). Inorg. Chem. Commun. 17, 9–12.CrossRefGoogle Scholar
  23. 23.
    C. D. Nicola, Y. Y. Karabach, A. M. Kirillov, M. Monari, L. Pandolfo, C. Pettinari, and A. J. L. Pombeiro (2007). Inorg. Chem. 46, 221–230.CrossRefGoogle Scholar
  24. 24.
    J. A. Sheikh, H. S. Jena, A. Adhikary, S. Khatua, and S. Konar (2013). Inorg. Chem. 52, 9717–9719.CrossRefGoogle Scholar
  25. 25.
    F. Condello, F. Garau, A. Lanza, M. Monari, F. Nestola, L. Pandolfo, and C. Pettinari (2015). Cryst. Growth Des. 15, 4854–4862.CrossRefGoogle Scholar
  26. 26.
    C. Di Nicola, F. Garau, M. Gazzano, A. Lanza, M. Monari, F. Nestola, L. Pandolfo, C. Pettinari, and F. Zorzi (2015). Cryst. Growth Des. 15, 1259–1272.CrossRefGoogle Scholar
  27. 27.
    S. Bala, S. Bhattacharya, A. Goswami, A. Adhikary, S. Konar, and R. Mondal (2014). Cryst. Growth Des. 14, 6391–6398.CrossRefGoogle Scholar
  28. 28.
    W. Y. Gao, R. Cai, T. Pham, K. A. Forrest, A. Hogan, P. Nugent, K. Williams, L. Wojtas, R. Luebke, Ł. J. Weseliński, M. J. Zaworotko, and B. Space (2015). Chem. Mater. 27, 2144–2151.CrossRefGoogle Scholar
  29. 29.
    L. L. Zheng, J. D. Leng, S. L. Zheng, Y. C. Zhaxi, W. X. Zhang, and M. L. Tong (2008). CrystEngComm. 10, 1467–1473.CrossRefGoogle Scholar
  30. 30.
    G. M. Sheldrick (2002). SADABS 2.05: Program for Area Detector Absorption Correction, University of Göttingen.Google Scholar
  31. 31.
    SHELXTL 6.10 (2000). Bruker Analytical Instrumentation, Madison, Wisconsin, USA.Google Scholar
  32. 32.
    M. Fujita, F. Ibukuro, H. Hagihara, and K. Ogura (1994). Nature 367, 720–723.CrossRefGoogle Scholar
  33. 33.
    A. Cingolani, M. Pellei, C. Pettinari, C. Santini, B. W. Skelton, and A. H. White (2002). Inorg. Chem. 41, 6633–6645.CrossRefGoogle Scholar
  34. 34.
    E. Zangrando, M. Casanova, and E. Alessio (2008). Chem. Rev. 108, 5013–5979.CrossRefGoogle Scholar
  35. 35.
    M. Rivera-Carrillo, I. Chakraborty, and R. G. Raptis (2010). Cryst. Growth Des. 10, 2606–2616.CrossRefGoogle Scholar
  36. 36.
    S. Su, Y. Zhang, M. Zhu, X. Song, S. Wang, S. Zhao, S. Song, X. Yang, and H. Zhang (2012). Chem. Commun. 48, 11118–11120.CrossRefGoogle Scholar
  37. 37.
    G. A. Senchyk, A. B. Lysenko, I. Boldog, E. B. Rusanov, A. N. Chernega, H. Krautscheid, and K. V. Domasevitch (2012). Dalton Trans. 41, 8675–8689.CrossRefGoogle Scholar
  38. 38.
    K. Shelly, D. C. Finster, Y. J. Lee, W. R. Scheidt, and C. A. Reed (1985). J. Am. Chem. Soc. 107, 5955–5959.CrossRefGoogle Scholar
  39. 39.
    H. C. Kang, A. W. Hanson, B. Eaton, and V. Boekelheide (1985). J. Am. Chem. Soc. 107, 1979–1985.CrossRefGoogle Scholar
  40. 40.
    J. E. Gano, G. Subramaniam, and R. Birnbaum (1990). J. Org. Chem. 55, 4760–4763.CrossRefGoogle Scholar
  41. 41.
    W. Xu, R. J. Puddephatt, K. W. Muir, and A. A. Torabi (1994). Organometallics 13, 3054–3062.CrossRefGoogle Scholar
  42. 42.
    L. R. Falvello, J. Forniés, A. Martin, V. Sicilia, and P. Villarroya (2002). Organometallics 21, 4604–4610.CrossRefGoogle Scholar
  43. 43.
    M. Casarin, C. Corvaja, C. di Nicola, D. Falcomer, L. Franco, M. Monari, L. Pandolfo, C. Pettinari, and F. Piccinelli (2005). Inorg. Chem. 44, 6265–6276.CrossRefGoogle Scholar
  44. 44.
    C. J. O’Connor (1982). Prog. Inorg. Chem. 29, 203–283.Google Scholar
  45. 45.
    F. B. Hulsbergen, R. W. M. Hoedt, G. C. Verschoor, J. Reedijk, and A. L. Spek (1983). J. Chem. Soc. Dalton Trans. 3, 539–541.CrossRefGoogle Scholar
  46. 46.
    M. Angaroni, G. A. Ardizzoia, T. Beringhelli, G. La Monica, D. Gatteschi, N. Masciocchi, and M. Moret (1990). J. Chem. Soc. Dalton Trans. 3305–3309.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lingling Zheng
    • 1
    Email author
  • Ruichong Yang
    • 2
  • Aiju Zhou
    • 2
  • Sheng Hu
    • 3
  1. 1.Guangzhou Vocational College of Technology & BusinessGuangzhouPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhouPeople’s Republic of China
  3. 3.School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations