Advertisement

Role of Microwave on Structural, Morphological, Optical and Visible Light Photocatalytic Performance of WO3 Nanostructures

  • M. ParthibavarmanEmail author
  • M. Karthik
  • S. Prabhakaran
Original Paper
  • 10 Downloads

Abstract

A novel, energy efficient and facile one step microwave irradiation method has been adopted to prepare the WO3 nanostructures without using any post annealing process. The WO3 nanoparticles were synthesized from tungstic acid and sodium hydroxide mixed aqueous solutions exposed for 5 min to microwave radiation at four different powers, namely 180, 360, 720 and 900 W. The as-synthesized product was characterized using structural, morphological and optical studies by powder X-ray diffraction (PXRD), scanning electron microscope, transmission electron microscope (TEM), Raman spectroscopy, photoluminescence spectroscopy (PL) and UV–visible diffuse reflectance (DRS) analysis. Nanocrystalline monoclinic structures of WO3 with different nanoscale were obtained through XRD and TEM analysis. The average grain size of the WO3 was increased from 20 to 38 nm with the increase of microwave power. A considerable red shift and decreasing the band gap energy was observed with the increase of microwave power. The photocatalytic efficiencies of the WO3 catalyst powders were investigated by using two different dyes such as Methylene blue and Congo red under visible light irradiation. The 900 W irradiated sample showed excellent catalytic efficiency and stability than other samples. The possible growth and photocatalytic mechanisms for these WO3 nanostructures were tentatively proposed.

Keywords

WO3 nanostructures Microwave irradiation Optical properties Catalyst Visible light 

Notes

References

  1. 1.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga (2001). Science 293, 269.CrossRefGoogle Scholar
  2. 2.
    A. Fujishima, X. Zhang, and D. A. Tryk (2008). Surf. Sci. Rep. 63, 515.CrossRefGoogle Scholar
  3. 3.
    X. Chen, L. Liu, P. Y. Yu, and S. S. Mao (2011). Science 331, 746.CrossRefGoogle Scholar
  4. 4.
    H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye (2012). Adv. Mater. 24, 229.CrossRefGoogle Scholar
  5. 5.
    K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, and K. Domen (2006). Nature 440, 295.CrossRefGoogle Scholar
  6. 6.
    Z. Zou, J. Ye, K. Sayama, and H. Arakawa (2001). Nature 414, 625.CrossRefGoogle Scholar
  7. 7.
    S. Ithurria, M. D. Tessier, B. Mahler, R. P. S. M. Lobo, B. Dubertret, and A. L. Efros (2011). Nat. Mater. 10, 936.CrossRefGoogle Scholar
  8. 8.
    M. A. El-Sayed (2004). Acc. Chem. Res. 37, 326.CrossRefGoogle Scholar
  9. 9.
    Y. S. Li, Z. L. Tang, J. Y. Zhang, and Z. T. Zhang (2017). J. Alloys Compd. 708, 358.CrossRefGoogle Scholar
  10. 10.
    S. Girish Kumar and K. S. R. Koteswara Rao (2017). Appl. Surf. Sci. 391, 124.CrossRefGoogle Scholar
  11. 11.
    Z. Wang, D. Chu, L. Wang, L. Wang, H. Wenhui, X. Chen, H. Yang, and J. Sun (2017). Appl. Surf. Sci. 396, 492.CrossRefGoogle Scholar
  12. 12.
    J. Wang, Z. Chen, G. Zhai, and Y. Men (2018). Appl. Surf. Sci. 462, 760.CrossRefGoogle Scholar
  13. 13.
    G. Ma, L. Junlin, Q. Meng, H. Lv, L. Shui, Y. Zhang, M. Jin, Z. Chen, M. Yuan, R. Nötzel, X. Wang, C. Wang, J.-M. Liu, and G. Zhou (2018). Appl. Surf. Sci. 451, 306.CrossRefGoogle Scholar
  14. 14.
    J. Jin, Yu Jiaguo, D. Guo, C. Cui, and W. Ho (2015). Appl. Surf. Sci. 11, 5262.Google Scholar
  15. 15.
    S. Supothina, P. Seeharaj, S. Yoriya, and M. Sriyudthsak (2007). Ceram. Int. 33, 931.CrossRefGoogle Scholar
  16. 16.
    C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski (2001). J. Am. Chem. Soc. 123, 10639.CrossRefGoogle Scholar
  17. 17.
    X. Song, Y. Zhao, and Y. Zheng (2006). Mater. Lett. 60, 3405.CrossRefGoogle Scholar
  18. 18.
    M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, and K. Thavamani (2014). J. Mater. Sci. Mater. Electron. 25, 730.CrossRefGoogle Scholar
  19. 19.
    M. Karthik, M. Parthibavarman, A. Kumaresan, S. Prabhakaran, V. Hariharan, R. Poonguzhali, and S. Sathishkumar (2017). J. Mater. Sci. Mater. Electron. 28, 6635.CrossRefGoogle Scholar
  20. 20.
    D. Madhan, M. Parthibavarman, P. Rajkumar, and M. Sangeetha (2015). J. Mater. Sci. Mater. Electron. 26, 6823.CrossRefGoogle Scholar
  21. 21.
    J. Y. Luo, X. X. Chen, W. Da Li, W. Y. Deng, W. Li, H. Y. Wu, L. F. Zhu, and Q. G. Zeng (2013). Appl. Phys. Lett. 102, 113104.CrossRefGoogle Scholar
  22. 22.
    D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu (2007). J. Raman Spectrosc. 38, 176.CrossRefGoogle Scholar
  23. 23.
    H.-J. Yuan, Y.-Q. Chen, F. Yu, D. Tang, X.-W. He, D. Zhao, and D. Tang (2011). Chin. Phys. B 20, 036103.CrossRefGoogle Scholar
  24. 24.
    W. Smith, Z. Y. Zhang, and Y. P. Zhao (2007). J. Vac. Sci. Technol. B 25, 1875.CrossRefGoogle Scholar
  25. 25.
    H. I. S. Nogueira, A. M. V. Cavaleiro, J. Rocha, T. Trindade, and J. D. P. Jesus (2004). Mater. Res. Bull. 39, 683.CrossRefGoogle Scholar
  26. 26.
    S. Kim and W. Choi (2002). J. Phys. Chem. B 106, 13311.CrossRefGoogle Scholar
  27. 27.
    M. Qamar, M. A. Gondal, and Z. H. Yamani (2010). Catal. Commun. 11, 768.CrossRefGoogle Scholar
  28. 28.
    N. A. Ramos-Delgadoa, M. A. Gracia-Pinillab, L. Maya-Treviño, L. Hinojosa-Reyesa, J. L. Guzman-Mara, and A. Hernández-Ramírez (2013). J. Hazard. Mater. 263, 36.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.PG and Research Department of PhysicsChikkaiah Naicker CollegeErodeIndia
  2. 2.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  3. 3.Centre for Crystal GrowthVIT UniversityVelloreIndia

Personalised recommendations