Fabricating Tungsten and Tungsten-Trioxide Nanocomposite Colloid in Deionized Water by Electric Spark Discharge Method
- 8 Downloads
Abstract
In this study, the electric spark discharge method was used to prepare tungsten (W) and tungsten-trioxide (WO3) nanocomposite colloid. A high-energy arc was used to melt a W rod, and the W ions were then ionized with a medium arc to prepare W and WO3 nanocomposite colloid at a high temperature. This preparation method was simple, fast, and effective. The particle size and zeta potential of the samples were measured with a Zetasizer and the shape, size, distribution, and crystal lattice of the W (0.225 nm) and WO3 (0.355 nm) nanoparticles were observed and compared using a Transmission Electron Microscope. The optical properties of the nanocomposite colloids were measured with a UV–visible spectrophotometer (UV–Vis). X-ray diffraction and a Raman Spectrometer were used to detect the crystal properties of the W and WO3 nanoparticles. The results showed that the components of the nanocomposite colloid were W and WO3. The average size of the nanoparticles was 79.65 nm and the zeta potential was − 52.5 mV; thus, the W and WO3 nanoparticles had the suspension effect. There was a peak at 320 nm according to UV–Vis, which is the characteristic absorbance of W and WO3.
Keywords
ESDM Tungsten nanoparticle Tungsten-trioxide nanoparticle Nanocomposite colloidNotes
Compliance with Ethical Standards
Conflict of interest
The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
References
- 1.D. Lin, J. S. Han, Y. S. Kwon, et al. (2015). Int. J. Refract. Met. Hard Mater. 53, 87–91.CrossRefGoogle Scholar
- 2.S. Jing, X. Wang, and Y. Tan (2018). F. Appl. Surf. Sci. 441, 654–662.CrossRefGoogle Scholar
- 3.H. Kim, K. Senthil, and K. Yong (2010). Mater. Chem. Phys. 120, 452–455.CrossRefGoogle Scholar
- 4.R. Abe, H. Takami, N. Murakami, and B. Ohtani (2008). J. Am. Chem. Soc. 130, 7780–7781.CrossRefGoogle Scholar
- 5.M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, W. Ueda, and R. Abe (2008). Chem. Commun. 48, 6552–6554.CrossRefGoogle Scholar
- 6.V. V. Malyshev and A. V. Pislyakov (2014). J. Anal. Chem. 69, 123–135.CrossRefGoogle Scholar
- 7.W. H. Tao and C. H. Tsai (2002). Sens. Actuators B: Chem. 81, 237–247.CrossRefGoogle Scholar
- 8.F. Fang, J. Kennedy, J. Futter, T. Hopf, A. Markwitz, E. Manikandan, and G. Henshaw (2011). Nanotechnology. 22, 335702.CrossRefGoogle Scholar
- 9.J. Kennedy, F. Fang, J. Futter, J. Leveneur, P. P. Murmu, G. N. Panin, et al. (2017). Diam. Relat. Mater. 71, 79–84.CrossRefGoogle Scholar
- 10.S. Adhikari and D. Sarkar (2014). ElectrochimicaActa 138, 115–123.CrossRefGoogle Scholar
- 11.N. Oka, M. Watanabe, K. Sugie, et al. (2013). Thin Solid Films 532, 1–6.CrossRefGoogle Scholar
- 12.K. H. Tseng, Y. H. Lin, D. C. Tien, H. C. Ku, and L. Stobinski (2018). Micro Nano Lett. 13, 1545–1549.CrossRefGoogle Scholar
- 13.K. H. Tseng, C. Y. Chang, M. Y. Chung, and T. S. Cheng (2017). Nanotechnology 28, 465701.CrossRefGoogle Scholar
- 14.K. H. Tseng and J. C. Huang (2011). J. Nanoparticle Res. 13, 2963–2972.CrossRefGoogle Scholar
- 15.J. Baizán, A. Navarro-Crespín, R. Casanueva, et al. (2014). IEEE Trans. Ind. Appl. 50, 4356–4362.CrossRefGoogle Scholar
- 16.W. Anderson, D. Kozak, V. A. Coleman, et al. (2013). J.colloid Interface Sci. 405, 322–330.CrossRefGoogle Scholar
- 17.D. E. Haines, D. C. O’Hanlon, J. Manna, et al. (2013). Inorg. Chem. 52, 9650–9658.CrossRefGoogle Scholar
- 18.D. Malakpur, M. Devi, and R. B. Sashidhar (2017). IET Nanobiotechnol. 11, 866–873.CrossRefGoogle Scholar
- 19.S. Bhople, S. Gaikwad, S. Deshmukh, et al. (2016). IET Nanobiotechnol. 10, 389–394.CrossRefGoogle Scholar
- 20.A. Gajović, D. Gracin, I. Djerdj, et al. (2008). Appl. Surf. Sci. 254, 2748–2754.CrossRefGoogle Scholar
- 21.L. M. Malard, M. A. A. Pimenta, G. Dresselhaus, et al. (2009). Phys. Rep. 473, 51–87.CrossRefGoogle Scholar
- 22.K. H. Tseng, M. Y. Chung, and J. L. Chiu (2018). J.Clust. Sci. 29, 215–224.CrossRefGoogle Scholar
- 23.K. H. Tseng, M. Y. Chung, and J. L. Chiu (2017). J.Clust. Sci. 28, 2653–2668.CrossRefGoogle Scholar
- 24.K. Ponappa, S. Aravindan, P. V. Rao, et al. (2010). Int. J. Adv. Manuf. Technol. 46, 1035–1042.CrossRefGoogle Scholar
- 25.K. H. Tseng, C. J. Chou, S. H. Shih, D. C. Tien, H. C. Ku, and L. Stobinski (2018). Nanomater. Nanotechnol. 8, 184798041775284.CrossRefGoogle Scholar
- 26.T. O. Hockenberry (1968). The Role of the Dielectric Fluid in Electrical Discharge Machining, SAE Technical Paper, 680635. https://doi.org/10.4271/680635.
- 27.F. Zheng, M. Guo, and M. Zhang (2013). CrystEngComm 15, 277–284.CrossRefGoogle Scholar
- 28.L. Xu, M. L. Yin, and S. F. Liu (2014). Sci. Rep. 4, 6745.CrossRefGoogle Scholar
- 29.W. H. Hu, G. Q. Han, B. Dong, and C. G. Liu (2015). J.Nanomater. 16, 23.Google Scholar
- 30.S. Kanpara, S. Khirwadkar, S. Belsare, K. Bhope, R. Swamy, Y. Patil, and K. Galodiya (2016). Mater. Today Proc. 3, 3055–3063.CrossRefGoogle Scholar