Fabricating Tungsten and Tungsten-Trioxide Nanocomposite Colloid in Deionized Water by Electric Spark Discharge Method

  • Kuo-Hsiung TsengEmail author
  • Hsueh-Chien Ku
  • Hen-Lin Lee
  • Der-Chi Tien
  • Leszek Stobinski
Original Paper


In this study, the electric spark discharge method was used to prepare tungsten (W) and tungsten-trioxide (WO3) nanocomposite colloid. A high-energy arc was used to melt a W rod, and the W ions were then ionized with a medium arc to prepare W and WO3 nanocomposite colloid at a high temperature. This preparation method was simple, fast, and effective. The particle size and zeta potential of the samples were measured with a Zetasizer and the shape, size, distribution, and crystal lattice of the W (0.225 nm) and WO3 (0.355 nm) nanoparticles were observed and compared using a Transmission Electron Microscope. The optical properties of the nanocomposite colloids were measured with a UV–visible spectrophotometer (UV–Vis). X-ray diffraction and a Raman Spectrometer were used to detect the crystal properties of the W and WO3 nanoparticles. The results showed that the components of the nanocomposite colloid were W and WO3. The average size of the nanoparticles was 79.65 nm and the zeta potential was − 52.5 mV; thus, the W and WO3 nanoparticles had the suspension effect. There was a peak at 320 nm according to UV–Vis, which is the characteristic absorbance of W and WO3.


ESDM Tungsten nanoparticle Tungsten-trioxide nanoparticle Nanocomposite colloid 


Compliance with Ethical Standards

Conflict of interest

The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.


  1. 1.
    D. Lin, J. S. Han, Y. S. Kwon, et al. (2015). Int. J. Refract. Met. Hard Mater. 53, 87–91.CrossRefGoogle Scholar
  2. 2.
    S. Jing, X. Wang, and Y. Tan (2018). F. Appl. Surf. Sci. 441, 654–662.CrossRefGoogle Scholar
  3. 3.
    H. Kim, K. Senthil, and K. Yong (2010). Mater. Chem. Phys. 120, 452–455.CrossRefGoogle Scholar
  4. 4.
    R. Abe, H. Takami, N. Murakami, and B. Ohtani (2008). J. Am. Chem. Soc. 130, 7780–7781.CrossRefGoogle Scholar
  5. 5.
    M. Sadakane, K. Sasaki, H. Kunioku, B. Ohtani, W. Ueda, and R. Abe (2008). Chem. Commun. 48, 6552–6554.CrossRefGoogle Scholar
  6. 6.
    V. V. Malyshev and A. V. Pislyakov (2014). J. Anal. Chem. 69, 123–135.CrossRefGoogle Scholar
  7. 7.
    W. H. Tao and C. H. Tsai (2002). Sens. Actuators B: Chem. 81, 237–247.CrossRefGoogle Scholar
  8. 8.
    F. Fang, J. Kennedy, J. Futter, T. Hopf, A. Markwitz, E. Manikandan, and G. Henshaw (2011). Nanotechnology. 22, 335702.CrossRefGoogle Scholar
  9. 9.
    J. Kennedy, F. Fang, J. Futter, J. Leveneur, P. P. Murmu, G. N. Panin, et al. (2017). Diam. Relat. Mater. 71, 79–84.CrossRefGoogle Scholar
  10. 10.
    S. Adhikari and D. Sarkar (2014). ElectrochimicaActa 138, 115–123.CrossRefGoogle Scholar
  11. 11.
    N. Oka, M. Watanabe, K. Sugie, et al. (2013). Thin Solid Films 532, 1–6.CrossRefGoogle Scholar
  12. 12.
    K. H. Tseng, Y. H. Lin, D. C. Tien, H. C. Ku, and L. Stobinski (2018). Micro Nano Lett. 13, 1545–1549.CrossRefGoogle Scholar
  13. 13.
    K. H. Tseng, C. Y. Chang, M. Y. Chung, and T. S. Cheng (2017). Nanotechnology 28, 465701.CrossRefGoogle Scholar
  14. 14.
    K. H. Tseng and J. C. Huang (2011). J. Nanoparticle Res. 13, 2963–2972.CrossRefGoogle Scholar
  15. 15.
    J. Baizán, A. Navarro-Crespín, R. Casanueva, et al. (2014). IEEE Trans. Ind. Appl. 50, 4356–4362.CrossRefGoogle Scholar
  16. 16.
    W. Anderson, D. Kozak, V. A. Coleman, et al. (2013). J.colloid Interface Sci. 405, 322–330.CrossRefGoogle Scholar
  17. 17.
    D. E. Haines, D. C. O’Hanlon, J. Manna, et al. (2013). Inorg. Chem. 52, 9650–9658.CrossRefGoogle Scholar
  18. 18.
    D. Malakpur, M. Devi, and R. B. Sashidhar (2017). IET Nanobiotechnol. 11, 866–873.CrossRefGoogle Scholar
  19. 19.
    S. Bhople, S. Gaikwad, S. Deshmukh, et al. (2016). IET Nanobiotechnol. 10, 389–394.CrossRefGoogle Scholar
  20. 20.
    A. Gajović, D. Gracin, I. Djerdj, et al. (2008). Appl. Surf. Sci. 254, 2748–2754.CrossRefGoogle Scholar
  21. 21.
    L. M. Malard, M. A. A. Pimenta, G. Dresselhaus, et al. (2009). Phys. Rep. 473, 51–87.CrossRefGoogle Scholar
  22. 22.
    K. H. Tseng, M. Y. Chung, and J. L. Chiu (2018). J.Clust. Sci. 29, 215–224.CrossRefGoogle Scholar
  23. 23.
    K. H. Tseng, M. Y. Chung, and J. L. Chiu (2017). J.Clust. Sci. 28, 2653–2668.CrossRefGoogle Scholar
  24. 24.
    K. Ponappa, S. Aravindan, P. V. Rao, et al. (2010). Int. J. Adv. Manuf. Technol. 46, 1035–1042.CrossRefGoogle Scholar
  25. 25.
    K. H. Tseng, C. J. Chou, S. H. Shih, D. C. Tien, H. C. Ku, and L. Stobinski (2018). Nanomater. Nanotechnol. 8, 184798041775284.CrossRefGoogle Scholar
  26. 26.
    T. O. Hockenberry (1968). The Role of the Dielectric Fluid in Electrical Discharge Machining, SAE Technical Paper, 680635.
  27. 27.
    F. Zheng, M. Guo, and M. Zhang (2013). CrystEngComm 15, 277–284.CrossRefGoogle Scholar
  28. 28.
    L. Xu, M. L. Yin, and S. F. Liu (2014). Sci. Rep. 4, 6745.CrossRefGoogle Scholar
  29. 29.
    W. H. Hu, G. Q. Han, B. Dong, and C. G. Liu (2015). J.Nanomater. 16, 23.Google Scholar
  30. 30.
    S. Kanpara, S. Khirwadkar, S. Belsare, K. Bhope, R. Swamy, Y. Patil, and K. Galodiya (2016). Mater. Today Proc. 3, 3055–3063.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kuo-Hsiung Tseng
    • 1
    Email author
  • Hsueh-Chien Ku
    • 1
  • Hen-Lin Lee
    • 1
  • Der-Chi Tien
    • 1
  • Leszek Stobinski
    • 2
  1. 1.Department of Electrical EngineeringNational Taipei University of TechnologyTaipeiTaiwan, ROC
  2. 2.Materials ChemistryWarsaw University of TechnologyWarsawPoland

Personalised recommendations