Advertisement

One-Dimensional Ag(I) and Cu(I) Coordination Polymers Constructed from the Two N-donor Ligands: Structural Insights and Anti-brain Tumor Activity Evaluation

  • Yu-Hua Wang
  • Jian-Jun Li
  • Yong-Qing LiEmail author
Original Paper
  • 3 Downloads

Abstract

This study reports the synthesis and characterization of two new Ag(I) and Cu(I)-based coordination polymers (CPs) with the chemical formulas of [Ag(bipp)(ClO4)]n (1, bipp = bis(4-pyridyl) propane) and [Cu2(bib)(CN)](NO3)(H2O)2 (2, bib = 4,4′-bisimidazolylbiphenyl). The molecular structures of the as-prepared CPs were determined by the single crystal X-ray diffraction studies and their phase purities have been confirmed via the power X-day diffraction analysis. The crystal structure analysis reveals that the both CPs reveal 1D chain-like structures and their frameworks are stabilized via the π–π interactions and H-bonding interactions. Furthermore, the size of the two CPs could be easily downsized into the nanometer via a simple reflux treatment. In connection to these, the as-prepared two nanostructural CPs were tested for their in vitro anticancer activities against three human brain tumor cell lines (SF17, SF767 and F126) via the MTT assay.

Keywords

Coordination polymer X-ray diffraction Topology Downsizing MTT assay 

Notes

References

  1. 1.
    R. L. Siegel, K. D. Miller, and A. Jemal (2017). CA. Cancer J. Clin. 67, 7.CrossRefGoogle Scholar
  2. 2.
    P. C. Bruijnincx and P. J. Sadler (2008). Curr. Opin. Chem. Biol. 12, 197.CrossRefGoogle Scholar
  3. 3.
    S. Ray, R. Mohan, J. K. Singh, M. K. Samantaray, M. M. Shaikh, D. Panda, and P. Ghosh (2007). J. Am. Chem. Soc. 129, 15042.CrossRefGoogle Scholar
  4. 4.
    A. Divsalar, M. J. Bagheri, A. A. Saboury, H. Mansoori-Torshizi, and M. Amani (2009). J. Phys. Chem. B 113, 14035.CrossRefGoogle Scholar
  5. 5.
    M. Poyraz, M. Sari, F. Demirci, M. Kosar, S. Demirayak, and O. Büyükgüngör (2008). Polyhedron 27, 2091.CrossRefGoogle Scholar
  6. 6.
    S. Kitagawa, R. Kitaura, and S. Noro (2004). Angew. Chemie Int. Ed. 43, 2334.CrossRefGoogle Scholar
  7. 7.
    I. H. Park, R. Medishetty, J. Y. Kim, S. S. Lee, and J. J. Vittal (2014). Angew. Chemie Int. Ed. 53, 5591.CrossRefGoogle Scholar
  8. 8.
    Y. Hasegawa and T. Nakanishi (2015). RSC Adv. 5, 338.CrossRefGoogle Scholar
  9. 9.
    M. Y. Sun and D. M. Chen (2018). Polyhedron. 147, 80.CrossRefGoogle Scholar
  10. 10.
    Y. Feng, H. Fan, Z. Zhong, H. Wang, and D. Qiu (2016). Inorg. Chem. 55, 11987.CrossRefGoogle Scholar
  11. 11.
    Y. Feng, M. Li, H. Fan, Q. Huang, D. Qiu, and H. Shi (2015). Dalton Trans. 44, 894.CrossRefGoogle Scholar
  12. 12.
    X. G. Hu, X. Li, and S. I. Yang (2015). Chem. Commun. 51, 10636.CrossRefGoogle Scholar
  13. 13.
    C. He, D. Liu, and W. Lin (2015). Chem. Rev. 115, 11079.CrossRefGoogle Scholar
  14. 14.
    S. Mukherjee, S. Ganguly, K. Manna, S. Mondal, S. Mahapatra, and D. Das (2018). Inorg. Chem. 57, 4050.CrossRefGoogle Scholar
  15. 15.
    D. Liu, C. Poon, K. Lu, C. He, and W. Lin (2014). Nat. Commun. 5, 4182.CrossRefGoogle Scholar
  16. 16.
    C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, and C. Marzano (2014). Chem. Rev. 114, 815.CrossRefGoogle Scholar
  17. 17.
    J. Serment-Guerrero, P. Cano-Sanchez, E. Reyes-Perez, F. Velazquez-Garcia, M. E. Bravo-Gomez, and L. Ruiz-Azuara (2011). Toxicol. Vitr. 25, 1376.CrossRefGoogle Scholar
  18. 18.
    V. T. Yilmaz, C. Icsel, J. Batur, S. Aydinlik, P. Sahinturk, and M. Aygun (2017). Eur. J. Med. Chem. 139, 901.CrossRefGoogle Scholar
  19. 19.
    R. S. Wang, J. Feng, Y. Z. Lei, D. M. Chen, and M. L. Lian (2018). Cryst. Res. Technol. 53, 1800065.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurosurgeryWeifang People’s HospitalWeifangChina
  2. 2.Department of RadiotherapyWeifang People’s HospitalWeifangChina
  3. 3.Department of EquipmentWeifang People’s HospitalWeifangChina

Personalised recommendations