Catalytic Degradation of Methyl Orange and Selective Sensing of Mercury Ion in Aqueous Solutions Using Green Synthesized Silver Nanoparticles from the Seeds of Derris trifoliata
- 36 Downloads
Abstract
In the present study, bio-augmented silver nanoparticles with Derris trifoliata seed extract (AgNP-DT) have been developed. Formation of AgNP-DT has been confirmed with X-ray diffraction (XRD), High resolution transmission electron microscopy (HRTEM) and Fourier-transform infrared spectroscopy (FTIR). Even though introduced for the first time as a catalyst owing to high surface area, the as-prepared nanoparticles showed one of the best catalytic activity in the reduction of a water soluble azo dye–methyl orange. An incredible pseudo-first order rate constant (0.3208 min−1) and activity parameter (1086 s−1 g−1) were obtained for the catalytic reduction of methyl orange with 4.9 μg AgNP-DT. Furthermore, AgNP-DT exhibits a good selectivity and sensitivity towards mercury(II) ions over other metals in aqueous solution. Absorbance of AgNP-DT exhibits a good linear relationship against concentration of Hg2+ with a limit of detection (LOD) of 1.55 μM. The mechanism of sensing activity of AgNP-DT was elucidated by measuring the variation in the zeta potential of the system with increasing concentration of Hg2+. Moreover the proposed method could be practicably applied for the detection of Hg2+ in real water samples with a percentage recovery in range of 91.41–108.07%.
Graphical Abstract
Keywords
Silver nanoparticles Derris trifoliata Catalytic activity Mercury ion Activity parameterNotes
Acknowledgements
The author (NC) is grateful to University Grants Commission (UGC), Government of India, New Delhi, India for providing financial assistance under the Faculty Development Programme. The authors are thankful to Inter-University Instrumentation Centre (DST-SAIF and DST-PURSE, Govt. of India) and School of Environmental Sciences, MGU (KSCSTE-SARD, VERC Project, Govt. of Kerala) for providing the instrumentation facility as well as other support. The authors are also thankful to Dr. A.P. Thomas, Director, ACESSD and Dr. C.T. Aravindakumar, Professor, SES-MGU for their valuable support for the study.
Compliance with Ethical Standards
Conflicts of interest
The authors declare that they have no conflict of interest.
References
- 1.G. Mance Pollution Threat of Heavy Metals in Aquatic Environments (Springer, Berlin, 2012).Google Scholar
- 2.K. Naseem, Z. H. Farooqi, R. Begum, and A. Irfan (2018). J. Clean. Prod. 187, 296.CrossRefGoogle Scholar
- 3.M. Saeed, A. Ahmad, R. Boddula, Inamuddin, Au Haq, and A. Azhar (2018). Environ. Chem. Lett. 16, 287.CrossRefGoogle Scholar
- 4.C. Nie, P. Sun, L. Zhu, S. Gao, H. Wu, and B. Wang (2017). Environ Chem. 14, 188.CrossRefGoogle Scholar
- 5.C. Fersi, L. Gzara, and M. Dhahbi (2005). Desalination 185, 399.CrossRefGoogle Scholar
- 6.D. Mani and C. Kumar (2014). Int. J. Environ. Sci. Technol. 11, 843.CrossRefGoogle Scholar
- 7.C. Liu, P. Wu, L. Tran, N. Zhu, and Z. Dang (2018). Environ. Chem. 15, 286.CrossRefGoogle Scholar
- 8.L. M. Soldatkina and E. V. Sagaidak (2010). J. Water Chem. Technol. 32, 212.CrossRefGoogle Scholar
- 9.S. S. Hassan, A. R. Solangi, M. H. Agheem, Y. Junejo, N. H. Kalwar, and Z. A. Taga (2011). J. Hazard. Mater. 190, 1030.CrossRefGoogle Scholar
- 10.H. Hu, J. H. Xin, H. Hu, X. Wang, D. Miao, and Y. Liu (2015). J. Mater. Chem. A 3, 11157.CrossRefGoogle Scholar
- 11.Y.-C. Chang and D.-H. Chen (2009). J. Hazard. Mater. 165, 664.CrossRefGoogle Scholar
- 12.P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, and M. H. Whangbo (2008). Angewandte Chemie Int. Edn. 47, 7931.CrossRefGoogle Scholar
- 13.S.-Y. Lin, Y.-T. Tsai, C.-C. Chen, C.-M. Lin, and C.-H. Chen (2004). J. Phys. Chem. B 108, 2134.CrossRefGoogle Scholar
- 14.N. Kulkarni and U. Muddapur (2014). J. Nanotechnol. 2014, 510246.CrossRefGoogle Scholar
- 15.P. Kumar, M. Govindaraju, S. Senthamilselvi, and K. Premkumar (2013). Colloids Surf B Biointerfaces 103, 658.CrossRefGoogle Scholar
- 16.Q. Wang, D. Kim, D. D. Dionysiou, G. A. Sorial, and D. Timberlake (2004). Environ. Pollut. 131, 323.CrossRefGoogle Scholar
- 17.M. C. Houston (2011). J. Clin. Hypertens. 13, 621.CrossRefGoogle Scholar
- 18.K. Leopold, M. Foulkes, and P. Worsfold (2010). Analytica Chimica Acta. 663, 127.CrossRefGoogle Scholar
- 19.S. W. Thomas, G. D. Joly, and T. M. Swager (2007). Chem. Rev. 107, 1339.CrossRefGoogle Scholar
- 20.N. Wanichacheva, M. Siriprumpoonthum, A. Kamkaew, and K. Grudpan (2009). Tetrahedron Lett. 50, 1783.CrossRefGoogle Scholar
- 21.K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, and A. Rafipour (2012). Sensors Actuators B Chem. 161, 880.CrossRefGoogle Scholar
- 22.R. Tabaraki and N. Sadeghinejad (2018). Ecotoxicol. Environ. Saf. 153, 101.CrossRefGoogle Scholar
- 23.F. Geng, X. Jiang, Y. Wang, C. Shao, K. Wang, P. Qu, and M. Xu (2018). Sensors Actuators B Chem. 260, 793.CrossRefGoogle Scholar
- 24.X. Zhang, W. Shi, X. Chen, and Z. Xie (2018). Sensors Actuators B Chem. 255, 3074.CrossRefGoogle Scholar
- 25.H. Yu, D. Long, and W. Huang (2018). Sensors Actuators B Chem. 264, 164.CrossRefGoogle Scholar
- 26.Y. Zhou, W. Huang, and Y. He (2018). Sensors Actuators B Chem. 270, 187.CrossRefGoogle Scholar
- 27.M. Zhao, H. Yu, and Y. He (2019). Sensors Actuators B Chem. 283, 329.CrossRefGoogle Scholar
- 28.Y. Gao, K. Wu, H. Li, W. Chen, M. Fu, K. Yue, X. Zhu, and Q. Liu (2018). Sensors Actuators B Chem. 273, 1635.CrossRefGoogle Scholar
- 29.H. Liu, Y. Ding, B. Yang, Z. Liu, Q. Liu, and X. Zhang (2018). Sensors Actuators B Chem. 271, 336.CrossRefGoogle Scholar
- 30.X. Zhu, W. Chen, K. Wu, H. Li, M. Fu, Q. Liu, and X. Zhang (2018). New J. Chem. 42, 1501.CrossRefGoogle Scholar
- 31.X. Xue, F. Wang, and X. Liu (2008). J. Am. Chem. Soc. 130, 3244.CrossRefGoogle Scholar
- 32.J. Du, M. Zhao, W. Huang, Y. Deng, and Y. He (2018). Anal. Bioanal. Chem. 410, 4519.CrossRefGoogle Scholar
- 33.S. Kaviya and E. Prasad (2014). ACS Sustain. Chem. Eng. 2, 699.CrossRefGoogle Scholar
- 34.N. Bonnia, M. Kamaruddin, M. Nawawi, S. Ratim, H. Azlina, and E. Ali (2016). Procedia Chem. 19, 594.CrossRefGoogle Scholar
- 35.A. Harborne Phytochemical Methods a Guide to Modern Techniques of Plant Analysis (Springer, Berlin, 1998).Google Scholar
- 36.S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, 17.CrossRefGoogle Scholar
- 37.S. Francis, S. Joseph, E. P. Koshy, and B. Mathew (2017). New J. Chem 41, 14288.CrossRefGoogle Scholar
- 38.A. Patterson (1939). Phys. Rev. 56, 978.CrossRefGoogle Scholar
- 39.C. Jiang, S. Liu, W. He, X. Luo, S. Zhang, Z. Xiao, X. Qiu, and H. Yin (2012). Molecules 17, 657.CrossRefGoogle Scholar
- 40.A. Yenesew, J. T. Kiplagat, S. Derese, J. O. Midiwo, J. M. Kabaru, M. Heydenreich, and M. G. Peter (2006). Phytochemistry 67, 988.CrossRefGoogle Scholar
- 41.L.-R. Xu, J. Wu, and S. Zhang (2006). J. Asian Nat. Prod. Res. 8, 9.CrossRefGoogle Scholar
- 42.Y. Takeda, K. Yano, H. Ayabe, T. Masuda, H. Otsuka, E. Sueyoshi, T. Shinzato, and M. Aramoto (2008). J. Nat. Med. 62, 476.CrossRefGoogle Scholar
- 43.M. Nasrollahzadeh, S. M. Sajadi, E. Honarmand, and M. Maham (2015). New J. Chem. 39, 4745.CrossRefGoogle Scholar
- 44.V. Vidhu and D. Philip (2014). Micron 56, 54.CrossRefGoogle Scholar
- 45.V. Vidhu and D. Philip (2014). Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 117, 102.CrossRefGoogle Scholar
- 46.D. Kang and M. Trenary (2000). Surf. Sci. 470, L13.CrossRefGoogle Scholar
- 47.D. C. Kalyani, A. A. Telke, S. P. Govindwar, and J. P. Jadhav (2009). Water Environ. Res. 81, 298.CrossRefGoogle Scholar
- 48.T. Shen, C. Jiang, C. Wang, J. Sun, X. Wang, and X. Li (2015). RSC Adv. 5, 58704.CrossRefGoogle Scholar
- 49.B. Baruah, G. J. Gabriel, M. J. Akbashev, and M. E. Booher (2013). Langmuir 29, 4225.CrossRefGoogle Scholar
- 50.T. Liu, J. X. Dong, S. G. Liu, N. Li, S. M. Lin, Y. Z. Fan, J. L. Lei, H. Q. Luo, and N. B. Li (2017). J. Hazard. Mater. 322, 430.CrossRefGoogle Scholar
- 51.K. Z. Kamali, A. Pandikumar, S. Jayabal, R. Ramaraj, H. N. Lim, B. H. Ong, C. S. D. Bien, Y. Y. Kee, and N. M. Huang (2016). Microchimica Acta. 183, 369.CrossRefGoogle Scholar
- 52.P. Vasileva, T. Alexandrova and I. Karadjova (2017). J. Chem. 2017.Google Scholar
- 53.L.-J. Huang, R.-Q. Yu, and X. Chu (2015). Analyst 140, 4987.CrossRefGoogle Scholar