Advertisement

Catalytic Degradation of Methyl Orange and Selective Sensing of Mercury Ion in Aqueous Solutions Using Green Synthesized Silver Nanoparticles from the Seeds of Derris trifoliata

  • Neethu Cyril
  • James Baben George
  • Laigi Joseph
  • V. P. SylasEmail author
Original Paper
  • 36 Downloads

Abstract

In the present study, bio-augmented silver nanoparticles with Derris trifoliata seed extract (AgNP-DT) have been developed. Formation of AgNP-DT has been confirmed with X-ray diffraction (XRD), High resolution transmission electron microscopy (HRTEM) and Fourier-transform infrared spectroscopy (FTIR). Even though introduced for the first time as a catalyst owing to high surface area, the as-prepared nanoparticles showed one of the best catalytic activity in the reduction of a water soluble azo dye–methyl orange. An incredible pseudo-first order rate constant (0.3208 min−1) and activity parameter (1086 s−1 g−1) were obtained for the catalytic reduction of methyl orange with 4.9 μg AgNP-DT. Furthermore, AgNP-DT exhibits a good selectivity and sensitivity towards mercury(II) ions over other metals in aqueous solution. Absorbance of AgNP-DT exhibits a good linear relationship against concentration of Hg2+ with a limit of detection (LOD) of 1.55 μM. The mechanism of sensing activity of AgNP-DT was elucidated by measuring the variation in the zeta potential of the system with increasing concentration of Hg2+. Moreover the proposed method could be practicably applied for the detection of Hg2+ in real water samples with a percentage recovery in range of 91.41–108.07%.

Graphical Abstract

Keywords

Silver nanoparticles Derris trifoliata Catalytic activity Mercury ion Activity parameter 

Notes

Acknowledgements

The author (NC) is grateful to University Grants Commission (UGC), Government of India, New Delhi, India for providing financial assistance under the Faculty Development Programme. The authors are thankful to Inter-University Instrumentation Centre (DST-SAIF and DST-PURSE, Govt. of India) and School of Environmental Sciences, MGU (KSCSTE-SARD, VERC Project, Govt. of Kerala) for providing the instrumentation facility as well as other support. The authors are also thankful to Dr. A.P. Thomas, Director, ACESSD and Dr. C.T. Aravindakumar, Professor, SES-MGU for their valuable support for the study.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    G. Mance Pollution Threat of Heavy Metals in Aquatic Environments (Springer, Berlin, 2012).Google Scholar
  2. 2.
    K. Naseem, Z. H. Farooqi, R. Begum, and A. Irfan (2018). J. Clean. Prod. 187, 296.CrossRefGoogle Scholar
  3. 3.
    M. Saeed, A. Ahmad, R. Boddula, Inamuddin, Au Haq, and A. Azhar (2018). Environ. Chem. Lett. 16, 287.CrossRefGoogle Scholar
  4. 4.
    C. Nie, P. Sun, L. Zhu, S. Gao, H. Wu, and B. Wang (2017). Environ Chem. 14, 188.CrossRefGoogle Scholar
  5. 5.
    C. Fersi, L. Gzara, and M. Dhahbi (2005). Desalination 185, 399.CrossRefGoogle Scholar
  6. 6.
    D. Mani and C. Kumar (2014). Int. J. Environ. Sci. Technol. 11, 843.CrossRefGoogle Scholar
  7. 7.
    C. Liu, P. Wu, L. Tran, N. Zhu, and Z. Dang (2018). Environ. Chem. 15, 286.CrossRefGoogle Scholar
  8. 8.
    L. M. Soldatkina and E. V. Sagaidak (2010). J. Water Chem. Technol. 32, 212.CrossRefGoogle Scholar
  9. 9.
    S. S. Hassan, A. R. Solangi, M. H. Agheem, Y. Junejo, N. H. Kalwar, and Z. A. Taga (2011). J. Hazard. Mater. 190, 1030.CrossRefGoogle Scholar
  10. 10.
    H. Hu, J. H. Xin, H. Hu, X. Wang, D. Miao, and Y. Liu (2015). J. Mater. Chem. A 3, 11157.CrossRefGoogle Scholar
  11. 11.
    Y.-C. Chang and D.-H. Chen (2009). J. Hazard. Mater. 165, 664.CrossRefGoogle Scholar
  12. 12.
    P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, and M. H. Whangbo (2008). Angewandte Chemie Int. Edn. 47, 7931.CrossRefGoogle Scholar
  13. 13.
    S.-Y. Lin, Y.-T. Tsai, C.-C. Chen, C.-M. Lin, and C.-H. Chen (2004). J. Phys. Chem. B 108, 2134.CrossRefGoogle Scholar
  14. 14.
    N. Kulkarni and U. Muddapur (2014). J. Nanotechnol. 2014, 510246.CrossRefGoogle Scholar
  15. 15.
    P. Kumar, M. Govindaraju, S. Senthamilselvi, and K. Premkumar (2013). Colloids Surf B Biointerfaces 103, 658.CrossRefGoogle Scholar
  16. 16.
    Q. Wang, D. Kim, D. D. Dionysiou, G. A. Sorial, and D. Timberlake (2004). Environ. Pollut. 131, 323.CrossRefGoogle Scholar
  17. 17.
    M. C. Houston (2011). J. Clin. Hypertens. 13, 621.CrossRefGoogle Scholar
  18. 18.
    K. Leopold, M. Foulkes, and P. Worsfold (2010). Analytica Chimica Acta. 663, 127.CrossRefGoogle Scholar
  19. 19.
    S. W. Thomas, G. D. Joly, and T. M. Swager (2007). Chem. Rev. 107, 1339.CrossRefGoogle Scholar
  20. 20.
    N. Wanichacheva, M. Siriprumpoonthum, A. Kamkaew, and K. Grudpan (2009). Tetrahedron Lett. 50, 1783.CrossRefGoogle Scholar
  21. 21.
    K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, and A. Rafipour (2012). Sensors Actuators B Chem. 161, 880.CrossRefGoogle Scholar
  22. 22.
    R. Tabaraki and N. Sadeghinejad (2018). Ecotoxicol. Environ. Saf. 153, 101.CrossRefGoogle Scholar
  23. 23.
    F. Geng, X. Jiang, Y. Wang, C. Shao, K. Wang, P. Qu, and M. Xu (2018). Sensors Actuators B Chem. 260, 793.CrossRefGoogle Scholar
  24. 24.
    X. Zhang, W. Shi, X. Chen, and Z. Xie (2018). Sensors Actuators B Chem. 255, 3074.CrossRefGoogle Scholar
  25. 25.
    H. Yu, D. Long, and W. Huang (2018). Sensors Actuators B Chem. 264, 164.CrossRefGoogle Scholar
  26. 26.
    Y. Zhou, W. Huang, and Y. He (2018). Sensors Actuators B Chem. 270, 187.CrossRefGoogle Scholar
  27. 27.
    M. Zhao, H. Yu, and Y. He (2019). Sensors Actuators B Chem. 283, 329.CrossRefGoogle Scholar
  28. 28.
    Y. Gao, K. Wu, H. Li, W. Chen, M. Fu, K. Yue, X. Zhu, and Q. Liu (2018). Sensors Actuators B Chem. 273, 1635.CrossRefGoogle Scholar
  29. 29.
    H. Liu, Y. Ding, B. Yang, Z. Liu, Q. Liu, and X. Zhang (2018). Sensors Actuators B Chem. 271, 336.CrossRefGoogle Scholar
  30. 30.
    X. Zhu, W. Chen, K. Wu, H. Li, M. Fu, Q. Liu, and X. Zhang (2018). New J. Chem. 42, 1501.CrossRefGoogle Scholar
  31. 31.
    X. Xue, F. Wang, and X. Liu (2008). J. Am. Chem. Soc. 130, 3244.CrossRefGoogle Scholar
  32. 32.
    J. Du, M. Zhao, W. Huang, Y. Deng, and Y. He (2018). Anal. Bioanal. Chem. 410, 4519.CrossRefGoogle Scholar
  33. 33.
    S. Kaviya and E. Prasad (2014). ACS Sustain. Chem. Eng. 2, 699.CrossRefGoogle Scholar
  34. 34.
    N. Bonnia, M. Kamaruddin, M. Nawawi, S. Ratim, H. Azlina, and E. Ali (2016). Procedia Chem. 19, 594.CrossRefGoogle Scholar
  35. 35.
    A. Harborne Phytochemical Methods a Guide to Modern Techniques of Plant Analysis (Springer, Berlin, 1998).Google Scholar
  36. 36.
    S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, 17.CrossRefGoogle Scholar
  37. 37.
    S. Francis, S. Joseph, E. P. Koshy, and B. Mathew (2017). New J. Chem 41, 14288.CrossRefGoogle Scholar
  38. 38.
    A. Patterson (1939). Phys. Rev. 56, 978.CrossRefGoogle Scholar
  39. 39.
    C. Jiang, S. Liu, W. He, X. Luo, S. Zhang, Z. Xiao, X. Qiu, and H. Yin (2012). Molecules 17, 657.CrossRefGoogle Scholar
  40. 40.
    A. Yenesew, J. T. Kiplagat, S. Derese, J. O. Midiwo, J. M. Kabaru, M. Heydenreich, and M. G. Peter (2006). Phytochemistry 67, 988.CrossRefGoogle Scholar
  41. 41.
    L.-R. Xu, J. Wu, and S. Zhang (2006). J. Asian Nat. Prod. Res. 8, 9.CrossRefGoogle Scholar
  42. 42.
    Y. Takeda, K. Yano, H. Ayabe, T. Masuda, H. Otsuka, E. Sueyoshi, T. Shinzato, and M. Aramoto (2008). J. Nat. Med. 62, 476.CrossRefGoogle Scholar
  43. 43.
    M. Nasrollahzadeh, S. M. Sajadi, E. Honarmand, and M. Maham (2015). New J. Chem. 39, 4745.CrossRefGoogle Scholar
  44. 44.
    V. Vidhu and D. Philip (2014). Micron 56, 54.CrossRefGoogle Scholar
  45. 45.
    V. Vidhu and D. Philip (2014). Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 117, 102.CrossRefGoogle Scholar
  46. 46.
    D. Kang and M. Trenary (2000). Surf. Sci. 470, L13.CrossRefGoogle Scholar
  47. 47.
    D. C. Kalyani, A. A. Telke, S. P. Govindwar, and J. P. Jadhav (2009). Water Environ. Res. 81, 298.CrossRefGoogle Scholar
  48. 48.
    T. Shen, C. Jiang, C. Wang, J. Sun, X. Wang, and X. Li (2015). RSC Adv. 5, 58704.CrossRefGoogle Scholar
  49. 49.
    B. Baruah, G. J. Gabriel, M. J. Akbashev, and M. E. Booher (2013). Langmuir 29, 4225.CrossRefGoogle Scholar
  50. 50.
    T. Liu, J. X. Dong, S. G. Liu, N. Li, S. M. Lin, Y. Z. Fan, J. L. Lei, H. Q. Luo, and N. B. Li (2017). J. Hazard. Mater. 322, 430.CrossRefGoogle Scholar
  51. 51.
    K. Z. Kamali, A. Pandikumar, S. Jayabal, R. Ramaraj, H. N. Lim, B. H. Ong, C. S. D. Bien, Y. Y. Kee, and N. M. Huang (2016). Microchimica Acta. 183, 369.CrossRefGoogle Scholar
  52. 52.
    P. Vasileva, T. Alexandrova and I. Karadjova (2017). J. Chem. 2017.Google Scholar
  53. 53.
    L.-J. Huang, R.-Q. Yu, and X. Chu (2015). Analyst 140, 4987.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental SciencesMahatma Gandhi UniversityKottayamIndia
  2. 2.Department of ChemistryAssumption College, ChanganasserryKottayamIndia
  3. 3.Department of ChemistrySt. Berchman’s College, ChanganasserryKottayamIndia
  4. 4.Department of ChemistryGovernment College, NattakomKottayamIndia

Personalised recommendations