Hydrogen Production from Water Splitting: Fabrication of ZnO Nanorod Decorated Cu NW Heterogeneous Hybrid Structures for Photocatalytic Applications
- 23 Downloads
Abstract
Presently, photocatalytic hydrogen generation from water splitting has attractive limelight research towards accomplish green globalization (zero CO2 emission) and considered as fuel source of the future due to their high energy content. Heterogeneous semiconductor/metal hybrid structures are receiving increased attention because of their advanced optical, electrical, and catalytic properties, which result from synergic effects. Herein, we developed an approach to fabricate interwoven Cu core nanowires (Cu NWs) decorated with different weight of ZnO nanorods (ZnO NRs) for photocatalytic applications. The bandgaps of the prepared hybrid structures were calculated by using UV–Vis spectra, their crystalline nature was examined with XRD, the morphology of nanostructures was studied by SEM, and their elemental composition and oxidation states were analyzed by XPS. Their photocatalytic activity was investigated for the production of hydrogen and dye (Rhodamine B) degradation. The Cu NW–ZnO NR hetero-assemblies were found to exhibit high photocatalytic properties, due to the synergetic effects of the unique semiconductor/metal heterojunction. The optimized CuZ2 composite exhibited 7.2 times H2-production and 6.2 times degradation of RhB greater than pure ZnO, respectively. Moreover, ZnO-nanorods can harvest solar light to generate photoelectrons, with subsequent electron transfer through the Cu NWs that might favor photocatalytic processes for many energy applications.
Keywords
Hydrogen production ZnO-nanorods ZnO/Cu NWs Heterogeneous structures Photo-catalysisNotes
Supplementary material
References
- 1.A. Kudo and Y. Miseki (2009). Chem. Soc. Rev. 38, 253.CrossRefGoogle Scholar
- 2.J. Ran, W. Guo, H. Wang, B. Zhu, J. Yu, and S. Z. Qiao (2018). Adv. Mater. 30, 1800128.CrossRefGoogle Scholar
- 3.K. Wenderich and G. Mu (2016). Chem. Rev. 116, 14587.CrossRefGoogle Scholar
- 4.Z. C. Zhang, B. Xu, and X. Wang (2014). Chem. Soc. Rev. 43, 7870.CrossRefGoogle Scholar
- 5.J. S. Lee, E. V. Shevchenko, and D. V. Talapin (2008). J. Am. Chem. Soc. 130, 9673.CrossRefGoogle Scholar
- 6.S. I. Naya, T. Kume, R. Akashi, M. Fujishima, and H. Tada (2018). J. Am. Chem. Soc. 140, 1251.CrossRefGoogle Scholar
- 7.R. Costi, A. E. Saunders, E. Elmalem, A. Salant, and U. Banin (2008). Nano Lett. 8, 637.CrossRefGoogle Scholar
- 8.S. S. Boxi and S. Paria (2014). Effect of silver doping on TiO2. RSC Adv. 4, 37752.CrossRefGoogle Scholar
- 9.K. Mondal and A. Sharma (2016). RSC Adv. 6, 83589.CrossRefGoogle Scholar
- 10.S. Kuriakose, B. Satpati, and S. Mohapatra (2015). Phys. Chem. Chem. Phys. 17, 25172.CrossRefGoogle Scholar
- 11.J. Gupta and D. Bahadur (2017). ACS Sustain. Chem. Eng. 5, 8702.CrossRefGoogle Scholar
- 12.Y. C. Liao, H. Y. Huang, and Y. J. Huang (2018). Appl. Catal. B 220, 264.CrossRefGoogle Scholar
- 13.C. Karunakaran, V. Rajeswari, and P. Gomathisankar (2011). Synth. React. Inorg. Met. 41, 369.CrossRefGoogle Scholar
- 14.T. Y. Peng, H. J. Lv, P. Zeng, and X. H. Zhang (2011). Chin. J. Chem. Phys. 24, 464.CrossRefGoogle Scholar
- 15.K. Yamato, A. Iwase, and A. Kudo (2015). ChemSusChem 8, 2902.CrossRefGoogle Scholar
- 16.W. Q. Cui, C. H. Xu, S. D. Zhang, L. R. Feng, S. J. Lu, and F. L. Qiu (2005). J. Photochem. Photobiol. A 175, 89.CrossRefGoogle Scholar
- 17.N. L. Wu and M. S. Lee (2004). Int. J. Hydrogen Energy 29, 1601.CrossRefGoogle Scholar
- 18.S. Danwittayakul, M. Jaisai, T. Koottatep, and J. Dutta (2013). Ind. Eng. Chem. Res. 52, 13629.CrossRefGoogle Scholar
- 19.K. Domen, S. Naito, T. Onishi, and K. Tamaru (1982). Chem. Phys. Lett. 92, 433.CrossRefGoogle Scholar
- 20.M. Shirzad-Siboni, A. Jonidi-Jafari, M. Farzadkia, A. Esrafili, and M. Gholami (2017). J. Environ. Manag. 186, 1.CrossRefGoogle Scholar
- 21.R. Sachan, V. Ramos, A. Malasi, S. Yadavali, B. Bartley, H. Garcia, G. Duscher, and R. Kalyanaraman (2013). Adv. Mater. 25, 2045.CrossRefGoogle Scholar
- 22.M. B. Gawande, A. Goswami, F. X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, and R. S. Varma (2016). Chem. Rev. 116, 3722.CrossRefGoogle Scholar
- 23.S. Wang, Y. Yu, Y. Zuo, C. Li, J. Yang, and C. Lu (2012). Nanoscale 4, 5895.CrossRefGoogle Scholar
- 24.G. R. Dillip, T. V. M. Sreekanth, and S. W. Joo (2017). Ceram. Int. 43, 6437.CrossRefGoogle Scholar
- 25.K. K. Mandari, B. S. Kwak, A. K. R. Police, and M. Kang (2017). Mater. Res. Bull. 95, 515.CrossRefGoogle Scholar
- 26.Z. Zhang, Y. Ji, J. Li, Z. Zhong, and F. Su (2015). RSC Adv. 5, 54364.CrossRefGoogle Scholar
- 27.M. Pashchanka, R. C. Hoffmann, A. Gurlo, J. C. Swarbrick, J. Khanderi, J. Engstler, A. Issanin, and J. J. Schneider (2011). Dalton Trans. 40, 4307.CrossRefGoogle Scholar
- 28.S. Y. Lee, N. Mettlach, N. Nguyen, Y. M. Sun, and J. M. White (2003). Appl. Surf. Sci. 206, 102.CrossRefGoogle Scholar
- 29.A. Hezam, K. Namratha, Q. A. Drmosh, B. N. Chandrashekar, K. K. Sadasivuni, Z. H. Yamani, C. Cheng, and K. Byrappa (2017). CrystEngComm 19, 3299.CrossRefGoogle Scholar
- 30.E. Luévano-Hipólitoa and L. M. Torres-Martínez (2017). Mater. Sci. Eng. B 226, 223.CrossRefGoogle Scholar
- 31.T. V. M. Sreekanth, J. J. Shim, and Y. R. Lee (2017). J. Photochem. Photobiol. B 169, 90.CrossRefGoogle Scholar
- 32.D. P. Kumar, H. Park, E. H. Kim, S. Hong, M. Gopannagari, D. A. Reddy, and T. K. Kim (2018). Appl. Catal. B 224, 230.CrossRefGoogle Scholar
- 33.Q. I. Rahman, M. Ahmad, S. K. Misra, and M. Lohani (2013). Mater. Lett. 91, 170.CrossRefGoogle Scholar
- 34.Q. Wang, J. Lian, Q. Ma, Y. Bai, J. Tong, J. Zhong, R. Wang, H. Huang, and B. Su (2015). New J. Chem. 39, 7112.CrossRefGoogle Scholar
- 35.S. Xiao, P. Liu, W. Zhu, G. Li, D. Zhang, and H. Li (2015). Nano Lett. 15, 4853.CrossRefGoogle Scholar
- 36.S. Liu, C. Han, Z. R. Tang, and Y. J. Xu (2016). Mater. Horiz. 3, 270.CrossRefGoogle Scholar