Advertisement

Plasmonic Resonance in Sodium Clusters: Competition Mechanism Between Electron Spill-Out Effect and Quantum Pressure in Electron Gas

  • Chuanfu HuangEmail author
Brief Communication
  • 8 Downloads

Abstract

In this paper, we found that the plasmonic resonance of sodium clusters is strongly dependent on the competition between the electron spill-out effect and quantum pressure in the electron gas. The critical point in this picture is that as the sodium cluster size decreases, the electron spill-out effect can reduce its density, causing red shift of the plasmonic resonance of sodium clusters, while the quantum pressure effect of the electron gas will oppositely induce its plasmonic peak to be blue shifted. From this point of view, we discovered that this competition can get balanced when the electron spill-out thickness of sodium clusters is near 0.75 Å, and this competition should be valid in a cluster radius from 15 to 25 Å.

Keywords

Sodium clusters Plasmonic resonance Competition mechanism 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11847012 and by the Fundamental Research Funds for the Central Universities under Grant No. 2018QNB11.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interests.

References

  1. 1.
    W. A. de Heer (1993). Rev. Mod. Phys. 65, 611.CrossRefGoogle Scholar
  2. 2.
    W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen (1984). Phys. Rev. Lett. 52, 2141.CrossRefGoogle Scholar
  3. 3.
    A. Aguado and J. M. López (2005). Phys. Rev. Lett. 94, 233401.CrossRefGoogle Scholar
  4. 4.
    W. A. de Heer, K. Selby, V. Kresin, J. Masui, M. Vollmer, A. Chatelain, and W. D. Knight (1987). Phys. Rev. Lett. 59, 1805.CrossRefGoogle Scholar
  5. 5.
    T. Reiners, C. Ellert, M. Schmidt, and H. Haberland (1995). Phys. Rev. Lett. 74, 1558.CrossRefGoogle Scholar
  6. 6.
    C. R. Wang, S. Pollack, T. A. Dahlseid, G. M. Koretsky, and M. M. Kappes (1992). J. Chem. Phys. 96, 7931.CrossRefGoogle Scholar
  7. 7.
    J. Borggreen, P. Chowdhury, N. Kebaïli, L. Lundsberg-Nielsen, K. Lützenkirchen, M. B. Nielsen, J. Pedersen, and H. D. Rasmussen (1993). Phys. Rev. B 48, 17507.CrossRefGoogle Scholar
  8. 8.
    K. Selby, M. Vollmer, J. Masui, V. Kresin, W. A. de Heer, and W. D. Knight (1989). Phys. Rev. B 40, 5417.CrossRefGoogle Scholar
  9. 9.
    J. H. Parks and S. A. McDonald (1989). Phys. Rev. Lett. 62, 2301.CrossRefGoogle Scholar
  10. 10.
    N. A. Mortensen, S. Raza, M. Wubs, T. Søndegaard, and I. Bozhevolnyi (2014). Nat. Commun. 5, 3809.CrossRefGoogle Scholar
  11. 11.
    H. P. Xiang, X. Zhang, D. Neuhauser, and G. Lu (2014). J. Phys. Chem. Lett. 5, 1163.CrossRefGoogle Scholar
  12. 12.
    U. Kreibig and M. Vollmer Optical Properties of Metal Clusters (Springer, Berlin, 1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physical Science and TechnologyChina University of Mining and TechnologyXuzhouChina

Personalised recommendations