Facile Synthesis of TiO2 Nanoparticles of Different Crystalline Phases and Evaluation of Their Antibacterial Effect Under Dark Conditions Against E. coli

  • Mónica Andrea Vargas
  • Jorge E. Rodríguez-Páez
Original Paper


In this paper we report the antibacterial activity in the absence of UV–Vis irradiation of TiO2 nanoparticles, in amorphous, anatase and rutile phases, obtained by the sol–gel process, on Escherichia coli strains. The synthesized TiO2 powders were characterized using X-ray diffraction (XRD), IR spectroscopy and UV–Vis absorption, as well as scanning and transmission electron microscopies. The XRD results showed that the solids were amorphous up to a temperature of 350 °C and that when subjected to heat treatments of higher temperatures, anatase crystalline phases were obtained, at 450 °C, and rutile type at temperatures higher than 770 °C, with a sub-micron particle size (< 1 μm) and varying morphology. The inactivating effect on bacteria of synthesized TiO2 was analyzed by recording the effect of its presence on bacterial strains of E. coli. To this end, the synthesized TiO2 in its amorphous (am-TiO2), anatase (a-TiO2) or rutile (r-TiO2) phases, at different concentrations, was incorporated into the E. coli cultures, placing aluminum foil over the strains to simulate darkness. Although all the phases of the TiO2 synthesized present reasonable antibacterial activity, the highest efficiency is seen in the cultures treated with r-TiO2.


TiO2 nanoparticles Sol–gel process Characterization Amorphous–anatase–rutile phases Bacterial inactivation Escherichia coli In vitro method Counting colony forming unit 



We are grateful to the University of Cauca for making their laboratory facilities available for carrying out this work and to VRI-Unicauca for all logistical support. We are especially grateful to Colin McLachlan for suggestions relating to the English text.


  1. 1.
    J. F. Banfield and D. R. Veblen (1992). Am. Miner. 77, 545–557.Google Scholar
  2. 2.
    W. H. Bauer (1961). Acta Crystallogr. A 14, 214–216. Scholar
  3. 3.
    G. V. Samsonov The Oxide Handbook (Plenum Press, New York, 1982).CrossRefGoogle Scholar
  4. 4.
    X. Bokhimi, A. Morales, M. Aguilar, J. A. Toledo-Antonio, and F. Pedraza (2001). Int. J. Hydrogen Energy 26, 1279–1287. Scholar
  5. 5.
    F. A. Grant (1959). Rev. Mod. Phys. 31, 646–674. Scholar
  6. 6.
    L. Brohan, A. Verbaere, M. Tournoux, and G. Demazeau (1982). Mater. Res. Bull. 17, 355–361. Scholar
  7. 7.
    A. G. Dylla, G. Henkelman, and K. J. Stevenson (2013). Acc. Chem. Res. 46, 1104–1112. Scholar
  8. 8.
    L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy, J. Muscat, N. M. Harrison, R. Ahuja, B. Holm, and B. Johansson (2001). Nature 410, 653–654. Scholar
  9. 9.
    J. Akimoto, Y. Gotoh, Y. Oosawa, N. Nonose, T. Kumagai, K. Aoki, and H. Takei (1994). J. Solid State Chem. 113, 27–36. Scholar
  10. 10.
    M. Mattesini, J. S. D. Almeida, L. Dubrovinsky, N. Dubrovinskaia, B. Johansson, and R. Ahuja (2004). Phys. Rev. B 70, 212110. Scholar
  11. 11.
    M. Latroche, L. Brohan, R. Marchand, and M. Tournoux (1989). J. Solid State Chem. 81, 78–82. Scholar
  12. 12.
    J. K. Dewhurst and J. E. Lowther (1996). Phys. Rev. B 54, R3673. Scholar
  13. 13.
    M. Gopel, W. J. Moberly Chan, and L. C. De Jonghe (1997). J. Mater. Sci. 32, 6001–6008. Scholar
  14. 14.
    S. G. Kumar and K. S. Rao (2014). Nanoscale 6, 11574–11632. Scholar
  15. 15.
    U. Bach, Y. Tachinaba, J. E. Moser, S. A. Haque, J. R. Durrant, M. Graetzel, and D. R. Klug (1999). J. Am. Chem. Soc. 121, 7445–7446. Scholar
  16. 16.
    N. G. Park, J. Van de Lagemaat, and A. J. Frank (2000). J. Phys. Chem. B 104, 8989–8994. Scholar
  17. 17.
    M. Kaneko and I. Okura Photocatalysis: Science and Technology (Kodansha-Spring Verlag, New York, 2002).Google Scholar
  18. 18.
    M. Anpo and P. V. Kamat Environmentally Benign Photocatalysts (Springer, New York, 2010).CrossRefGoogle Scholar
  19. 19.
    G. Nogami, R. Shiratsuchi, and S. Ohkubo (1991). J. Electrochem. Soc. 138, 751–758. Scholar
  20. 20.
    E. Topoglidis, A. E. Cass, G. Gilardi, S. Sadeghi, N. Beaumont, and J. R. Durrant (1998). Anal. Chem. 70, 5111–5113. Scholar
  21. 21.
    J. Geserick, T. Froeschl, N. Huesing, G. Kucerova, M. Makosch, T. Diemant, S. Ecckle, and R. J. Behm (2011). Dalton Trans. 40, 3269–3286. Scholar
  22. 22.
    Z. Zhang, A. Kladi, and X. E. Verykios (1994). J. Phys. Chem. 98, 6804–6811. Scholar
  23. 23.
    M. M. Shubert, V. Plzak, J. Garche, and R. J. Behm (2001). Catal. Lett. 76, 143–150. Scholar
  24. 24.
    W. P. Hsu, R. Yu, and E. Matijevic (1993). J. Colloid Interface Sci. 156, 56–65. Scholar
  25. 25.
    P. Kubiak, T. Froeschl, N. Huesing, U. Hoermann, U. Kaiser, R. Schiller, C. K. C. K. Weiss, K. Landfester, and M. Wohlfahrt-Mhrens (2011). Small 7, 1690–1696. Scholar
  26. 26.
    L. Kavan (2012). Chem. Rev. 12, 131–142. Scholar
  27. 27.
    A. Mills, H. R. Davis, and D. Worsley (1993). Chem. Soc. Rev. 22, 417–425. Scholar
  28. 28.
    P. Pichat Photocatalysis and Water Purification (Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim, 2013). Scholar
  29. 29.
    P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby (1999). Appl. Environ. Microbiol. 65, 4094–4098.Google Scholar
  30. 30.
    N. Cioffi and M. Rai Nano-antimicrobials: Progress and Prospects in Section I Synthesis and Characterization of Novel Nanomicrobials (Springer, Berlin, 2012).CrossRefGoogle Scholar
  31. 31.
    Y. Paz, Z. Luo, L. Rabenberg, and A. Heller (1995). J. Mater. Res. 10, 2842–2848. Scholar
  32. 32.
    G. Eranna Metal Oxide Nanostructures as Gas Sensing Devices (Taylor & Francis, Boca Raton, 2012).Google Scholar
  33. 33.
    X. Chen and S. S. Mao (2007). Chem. Rev. 107, 2891–2959. Scholar
  34. 34.
    T. Fröschl, U. Hörmann, P. Kubiak, G. Kucerová, M. Pfanzelt, C. K. Eiss, R. J. Behm, N. Hüsing, U. Kaiser, K. Landfester, and M. Wohlfahrt-Mehrens (2012). Chem. Soc. Rev. 41, 5313–5360. Scholar
  35. 35.
    Y. Bai, I. Mora-Seró, F. D. Angelis, J. Bisquert, and P. Wang (2014). Chem. Rev. 114, 1095–10130. Scholar
  36. 36.
    Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li (2014). Chem. Rev. 114, 9987–10043. Scholar
  37. 37.
    U. Diebold (2003). Surf. Sci. Rep. 48, 53–229. Scholar
  38. 38.
    V. V. Hong, H. Zung, and N. H. B. Trong (2007). Eur. Phys. J. D 44, 515–524. Scholar
  39. 39.
    H. Zhang, B. Chen, and J. F. Banfield (2008). Phys. Rev. B 78, 214106. Scholar
  40. 40.
    V. V. Hong in K. S. Sattler (ed.), Handbook of Nanophysics: Nanoparticles and Quantum Dots (CRC Press, New York, 2010), pp. 1-1–1-10.Google Scholar
  41. 41.
    V. V. Hong (2011). Chem. Phys. Res. J. 4, 43–62.Google Scholar
  42. 42.
    L. Romano, V. Privitera, and C. Jagadish Defects in Semiconductors, Semiconductors and Semimatels, vol. 91 (Academic Press, San Diego, 2015).Google Scholar
  43. 43.
    U. I. Gaya Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids (Springer, Dordrecht, 2014).CrossRefGoogle Scholar
  44. 44.
    M. K. Nowotny, L. R. Sheppard, and J. Nowotny (2008). J. Phys. Chem. C 112, 5275–5300. Scholar
  45. 45.
    X. Pan, M. Q. Yang, X. Fu, N. Zhang, and Y. J. Xu (2013). Nanoscale 5, 3601–3614. Scholar
  46. 46.
    Z. Wu, S. Cao, C. Zhang, and L. Piao (2017). Nanotechnology 28, 275706. Scholar
  47. 47.
    V. Gurylev, M. Mishra, Y. C. Su, and T. P. Perng (2016). Chem. Commun. 52, 7604–7607. Scholar
  48. 48.
    M. Kong, Y. Z. Li, X. Chen, T. T. Tian, P. F. Fang, F. Zheng, and X. J. Zhao (2011). J. Am. Chem. Soc. 133, 16414–16417. Scholar
  49. 49.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson (2010). Chem. Rev. 110, 6595–6663. Scholar
  50. 50.
    S. C. Roy, O. K. Varghese, M. Paulose, and C. A. Grimes (2010). ACS Nano 4, 1259–1273. Scholar
  51. 51.
    C. C. Mercado, F. J. Knorr, J. L. McHale, S. M. Usmani, A. S. Chimura, and L. V. Saraf (2012). J. Phys. Chem. C 116, 10796–10804. Scholar
  52. 52.
    J. Wu, H. Lu, X. Zhang, F. Raziq, Y. Qu, and L. Jing (2016). Chem. Commun. 52, 5027–5029. Scholar
  53. 53.
    Z. Zhao, X. Zhang, G. Zhang, Z. Liu, D. Qu, X. Miao, P. Feng, and Z. Sun (2015). Nano Res. 8, 4061–4071. Scholar
  54. 54.
    V. Srivastava, D. Gusain, and Y. Chandra Sharma (2015). Ind. Eng. Chem. Res. 54, 6209–6233. Scholar
  55. 55.
    N. Durán, S. S. Guterres, and O. L. Alves Nanotoxicology: Materials, Methodologies and Assessments (Springer, New York, 2014). Scholar
  56. 56.
    A. Albanese, P. S. Tang, and W. C. W. Chan (2012). Annu. Rev. Biomed. Eng. 14, 1–16. Scholar
  57. 57.
    T. Matsunaga, R. Tomoda, T. Nakajima, and H. Wake (1985). FEMS Microbiol. Lett. 29, 211–214. Scholar
  58. 58.
    H. M. Yadav, J. S. Kim, and S. H. Pawar (2016). Korean J. Chem. Eng. 33, 1989–1998. Scholar
  59. 59.
    O. Akhavan and E. Ghaderi (2010). Surf. Coat. Technol. 204, 3676–3683. Scholar
  60. 60.
    F. Grande and P. Tucci (2016). Mini. Rev. Med. Chem. 16, 762–769. Scholar
  61. 61.
    S. M. Dizaj, F. Lotfipour, M. Barzegar-Jajali, M. H. Zarrintan, and K. Adibkla (2014). Mater. Sci. Eng. C 44, 278–284. Scholar
  62. 62.
    A. S. Roy, A. Parveen, A. R. Koppalkar, and M. Prasad (2013). J. Biomater. Nanobiotechnol. 1, 37–41. Scholar
  63. 63.
    I. Fenoglio, G. Greco, S. Livraghi, and B. Fubini (2009). Chem. Eur. J. 15, 4614–4621. Scholar
  64. 64.
    M. Li, M. E. Noriega-Trevino, N. Nino-Matínez, C. Marambio-Jones, J. Wang, R. Damoiseaux, F. Ruiz, and E. M. V. Hock (2011). Environ. Sci. Technol. 45, 8989–8995. Scholar
  65. 65.
    E. Albert, P. A. Albouy, A. Ayral, P. Basa, G. Csik, N. Nagy, S. Rouldés, V. Rouessac, G. Sáfrán, A. Suhajda, Z. Zolnai, and Z. Hórvölgyi (2015). RSC Adv. 5, 59070. Scholar
  66. 66.
    I. Daou, N. Moukrad, O. Zegaoui, and F. R. Filai (2017). Water Sci. Technol. 77, 1238–1249. Scholar
  67. 67.
    K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, and H. Sugimoto (2010). Ceram. Int. 36, 497–506. Scholar
  68. 68.
    V. L. Prasanna and R. Vijayaraghavan (2015). Langmuir 31, 9155–9162. Scholar
  69. 69.
    A. Joe, S. H. Park, K. D. Shim, D. J. Kim, K. H. Jhee, H. W. Lee, C. H. Heo, H. M. Kim, and E.-S. Jang (2017). J. Ind. Eng. Chem. 45, 430–439. Scholar
  70. 70.
    J. R. Gurr, A. S. S. Wang, C. H. Chen, and K. Y. Jan (2005). Toxicology 213, 66–73. Scholar
  71. 71.
    N. K. Gali, Z. Ning, W. Daoud, and P. Brimblecombe (2016). J. Appl. Toxicol. 36, 1355–1363. Scholar
  72. 72.
    K. Tanaka, M. F. V. Capule, and T. Hinasaga (1991). Chem. Phys. Lett. 187, 73–76. Scholar
  73. 73.
    S. L. Suib, New and Future Developments in Catalysis: Solar Photocatalysis, chap. 10 (Elsevier, Amsterdam, 2013).Google Scholar
  74. 74.
    V. H. Grassian, Nanoscience and Nanotechnology: Environmental and Health Impacts, chap. 13 (Wiley, Hoboken, 2008).Google Scholar
  75. 75.
    A. Rincón and C. Pulgarin (2004). Appl. Catal. B Environ. 49, 99–112. Scholar
  76. 76.
    M. Bekbolet (1997). Water Sci. Technol. 35, 95–100. Scholar
  77. 77.
    M. Cho, H. Chung, W. Choi, and J. Yoon (2005). Appl. Environ. Microbiol. 71, 270–275. Scholar
  78. 78.
    M. A. Vargas and J. E. Rodríguez-Páez (2017). J. Non Cryst. Solids 459, 192–205. Scholar
  79. 79.
    K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley-Interscience, Hoboken, 2009).Google Scholar
  80. 80.
    L. Marchese, E. Gianotti, V. Dellarocca, T. Maschmeyer, F. Rey, S. Coluccia, and J. M. Thomas (1999). Phys. Chem. Chem. Phys. 1, 585–592. Scholar
  81. 81.
    K. Sunada, T. Watanabe, and K. Hashimoto (2003). J. Photochem. Photobiol. A 156, 227–233. Scholar
  82. 82.
    Z. Huang, P. C. Maness, D. M. Blake, E. J. Wolfrum, S. Smolinski, and W. Jacoby (2000). J. Photochem. Photobiol. A 130, 163–170. Scholar
  83. 83.
    M. J. Llansola-Portoles, J. J. Bergkamp, D. Finkelstein-Shapino, B. D. Sherman, G. Kadis, N. M. Dimitrijevic, D. Gust, T. A. Moore, and A. L. Moore (2014). J. Phys. Chem. A 118, 10631–10638. Scholar
  84. 84.
    D. A. Panayotov and J. R. Morris (2009). J. Phys. Chem. C 113, 15684–15691. Scholar
  85. 85.
    L. B. Xiong, J. L. Li, B. Yang, and Y. Yu (2012). J. Nanomater.. Scholar
  86. 86.
    A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Caballh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton (2010). PNAS 107, 2391–2396. Scholar
  87. 87.
    A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson (2009). Nat. Mater. 8, 543–557. Scholar
  88. 88.
    Q. X. Mu, G. B. Jiang, L. X. Chen, H. Y. Zhou, D. Fourches, A. Tropsha, and B. Yan (2014). Chem. Rev. 114, 7740–7781. Scholar
  89. 89.
    V. M. Longo, F. C. Picon, C. Zamperini, A. R. Albuquerque, J. R. Sambrano, C. E. Vergani, A. L. Machado, J. Andrés, A. C. Hernandes, J. A. Varela, and E. Longo (2013). Chem. Phys. Lett. 577, 114–120. Scholar
  90. 90.
    T. Bak, J. Nowotny, N. J. Sucher, and E. Wachsman (2011). J. Phys. Chem. C 115, 15711–15738. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mónica Andrea Vargas
    • 1
    • 2
  • Jorge E. Rodríguez-Páez
    • 1
  1. 1.Grupo CYTEMAC, Departamento de físicaUniversidad del CaucaPopayánColombia
  2. 2.University of ValleCaliColombia

Personalised recommendations