Uncapped Silver Nanoclusters as Potential Catalyst for Enhanced Direct-Electrochemical Oxidation of 4-Nitrophenol

  • G. M. Kalaiyarasi
  • R. Elakkiya
  • M. Kundu
  • W. Jin
  • M. Sasidharan
  • G. MaduraiveeranEmail author
Original Paper


Herein silver nanoclusters (Ag NCS) are synthesized by one-step, and facile chemical reduction strategy in water medium at room temperature without employing any external stabilizing agents. Silver nanoclusters based film was prepared on a glassy carbon electrode surface (GCE Ag NCS) as the working electrode for the direct electrochemical oxidation of 4-nitrophenol for the first time. It is found that Ag nanoclusters exhibit an admirable electrocatalytic activity for the direct-oxidation of 4-nitrophenol by offering huge accessible electrochemical active surface area and a facile environment for the electron transfer from analyte to the electrode in the absence of any other mediator or enzymes on the electrode surface. Silver nanoclusters based electrode demonstrates significantly improved anodic current by ~ 12 times and less positive anodic peak potential shift by ~ 0.27 V in comparison to bare GCE, revealing superior performance of present electrode materials for direct-oxidation of 4-nitrophenol. The GCE Ag NCS also exhibits high mass activity of 64.3 A g−1 and diffusion co-efficient of 0.2 × 10−3 cm2 s−1. The catalyst developed in this investigation also possesses good durability under 1.0 M KOH, demonstrating that the Ag nanoclusters constructed electrodes have promising practical environmental applications.

Graphical Abstract


Silver nanocluster Modified electrode Electrocatalyst 4-Nitrophenol Environmental application 



GM thanks to DST-FIST (fund for improvement of S&T infrastructure) for financial assistance for Department of Chemistry, SRM Institute of Science and Technology, No. SR/FST/CST-266/2015(c).


  1. 1.
    X. Tian, P. Gao, Y. Nie, C. Yang, Z. Zhou, Y. Li, and Y. Wang (2017). Chem. Commun. 53, 6589.CrossRefGoogle Scholar
  2. 2.
    L. Xiao, R. Xu, and F. Wang (2018). Talanta 179, 448.CrossRefGoogle Scholar
  3. 3.
    K. Yan, Y. Yang, Y. Zhu, and J. Zhang (2014). Anal. Chem. 89, 8599.CrossRefGoogle Scholar
  4. 4.
    A. Arvinte, M. Mahosenaho, M. Pinteala, A.-M. Sesay, and V. Virtanen (2014). Microchim. Acta 174, 337.CrossRefGoogle Scholar
  5. 5.
    G. St Helen, P. Jacob 3rd, M. Peng, D. A. Dempsey, S. K. Hammond, and N. L. Benowitz (2014). Oncology 23, 2774.Google Scholar
  6. 6.
    R. J. S. Nastaran Jadbabaei, D. Shuai, and H. Zhang (2017). Appl. Catal. A General 543, 209.CrossRefGoogle Scholar
  7. 7.
    R. Paolesse, S. Nardis, D. Monti, M. Stefanelli, and C. Di Natale (2017). Chem. Rev. 117, 2517.CrossRefGoogle Scholar
  8. 8.
    W. S. P. Carvalho, M. Wei, N. Ikpo, Y. Gao, and M. J. Serpe (2018). Anal. Chem. 90, 459.CrossRefGoogle Scholar
  9. 9.
    R. Gui, H. Jin, H. Guo, and Z. Wang (2018). Biosens. Bioelectron. 100, 56.CrossRefGoogle Scholar
  10. 10.
    S. Wang, X. Li, Y. Liu, C. Zhang, X. Tan, G. Zeng, B. Song, and L. Jiang (2018). J. Hazard. Mater. 342, 177.CrossRefGoogle Scholar
  11. 11.
    B. Thirumalraj, C. Rajkumar, S. M. Chen, and K. Y. Lin (2017). J. Colloid Interface Sci. 499, 83.CrossRefGoogle Scholar
  12. 12.
    M. Puiu, L. Bondilǎ, A. Rǎducan, and D. Oancea (2017). Appl. Catal. A Gen. 516, 90.CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, H. Yang, Z. Zhou, K. Huang, S. Yang, and G. Han (2017). Bioconj. Chem. 28, 869.CrossRefGoogle Scholar
  14. 14.
    R. Das, C. D. Vecitis, A. Schulze, B. Cao, A. F. Ismail, X. Lu, J. Chen, and S. Ramakrishna (2017). Chem. Soc. Rev. 46, 6946.CrossRefGoogle Scholar
  15. 15.
    D. Guillen, A. Ginebreda, M. Farre, R. M. Darbra, M. Petrovic, M. Gros, and D. Barcelo (2012). Sci. Total Environ. 440, 236.CrossRefGoogle Scholar
  16. 16.
    Kuan Soo Shin, Jeong-Yong Choi, and Kwan Kim (2012). Appl. Catal. A General 413–414, 170.CrossRefGoogle Scholar
  17. 17.
    M. M. Hussain, M. M. Rahman, and A. M. Asiri (2016). PLoS ONE 11, e0166265.CrossRefGoogle Scholar
  18. 18.
    J. Gao, M. Liu, H. Song, S. Zhang, Y. Qian, and A. Li (2016). J. Hazard. Mater. 318, 99.CrossRefGoogle Scholar
  19. 19.
    A. AbuRabi-Stanković, Z. Mojović, A. Milutinović-Nikolić, N. Jović-Jovičić, P. Banković, M. Žunić, and D. Jovanović (2013). Appl. Clay Sci. 77–78, 61.CrossRefGoogle Scholar
  20. 20.
    J. Min, B. Wang, and X. Hu (2017). Sci. Rep. 7, 5983.CrossRefGoogle Scholar
  21. 21.
    K. S. Asha, G. S. Vaisakhan, and S. Mandal (2016). Nanoscale 8, 11782.CrossRefGoogle Scholar
  22. 22.
    V. Sethuraman, P. Muthuraja, J. Anandha Raj, and P. Manisankar (2016). Biosens. Bioelectron. 84, 112.CrossRefGoogle Scholar
  23. 23.
    J. Chen, J. Tang, J. Zhou, L. Zhang, G. Chen, and D. Tang (2014). Anal. Chim. Acta 810, 10.CrossRefGoogle Scholar
  24. 24.
    A. Arvinte, M. Ignat, M. Pinteala, and L. D. Ignat (2017). Curr. Anal. Chem. 13, 370.CrossRefGoogle Scholar
  25. 25.
    X. Tan, B. Li, K. Liew, and C. Li (2010). Biosen. Bioelectron. 26, 868.CrossRefGoogle Scholar
  26. 26.
    J. Huang, Z. Wang, J. Zhang, X. Zhang, J. Ma, and Z. Wu (2015). Sci. Rep. 5, 9268.CrossRefGoogle Scholar
  27. 27.
    H. Yu, M. Zhao, L. Zhang, H. Dong, H. Yu, and Z. Chen (2017). Environ. Technol. 38, 2907.CrossRefGoogle Scholar
  28. 28.
    L. Xu, G. Liang, and M. Yin (2017). Chemosphere 173, 425.CrossRefGoogle Scholar
  29. 29.
    P. Mandal, B. K. Dubey, and A. K. Gupta (2017). Waste Manag. 69, 250.CrossRefGoogle Scholar
  30. 30.
    A. S. Fajardo, H. F. Seca, R. C. Martins, V. N. Corceiro, J. P. Vieira, M. E. Quinta-Ferreira, and R. M. Quinta-Ferreira (2017). Environ. Sci. Pollut. Res. Int. 24, 7521.CrossRefGoogle Scholar
  31. 31.
    R. Pfeifer, P. T. Martinhon, C. Sousa, J. C. Moreira, M. A. Chaer do Nascimento, and J. Barek (2015). Int. J. Electrochem. Sci. 10, 7261.Google Scholar
  32. 32.
    G. Maduraiveeran and W. Jin (2017). Trends Environ. Anal. Chem. 13, 10.CrossRefGoogle Scholar
  33. 33.
    M. Pontié, G. Thouand, F. De Nardi, I. Tapsoba, and S. Lherbette (2011). Electroanalytical 23, 1579.CrossRefGoogle Scholar
  34. 34.
    M. Govindhan, T. Lafleur, B.-R. Adhikari, and A. Chen (2015). Electroanalytical 27, 902.CrossRefGoogle Scholar
  35. 35.
    C. W. Chang, G. Maduraiveeran, J. C. Xu, G. W. Hunter, and P. K. Dutta (2014). Sens. Actuators B Chem. 204, 183.CrossRefGoogle Scholar
  36. 36.
    G. Maduraiveeran and R. Ramaraj (2017). J. Anal. Sci. Technol. 8, 1.CrossRefGoogle Scholar
  37. 37.
    M. Govindhan, Z. Liu, and A. Chen (2016). Nanomaterials 6, 1.CrossRefGoogle Scholar
  38. 38.
    M. Govindhan, M. Amiri, and A. Chen (2015). Biosens. Bioelectron. 66, 474.CrossRefGoogle Scholar
  39. 39.
    G. Maduraiveeran and R. Ramaraj (2007). Electrochem. Commun. 9, 2051.CrossRefGoogle Scholar
  40. 40.
    G. Maduraiveeran and R. Ramaraj (2007). J. Electroanal. Chem. 608, 52.CrossRefGoogle Scholar
  41. 41.
    G. Maduraiveeran, M. Sasidharan, and V. Ganesan (2015). Biosens. Bioelectron. 103, 113.CrossRefGoogle Scholar
  42. 42.
    G. Maduraiveeran, M. Sasidharan, and W. Jin (2018). J. Electroanal. Chem. 808, 259.CrossRefGoogle Scholar
  43. 43.
    G. Jie, L. Tan, Y. Zhao, and X. Wang (2017). Biosens. Bioelectron. 94, 243.CrossRefGoogle Scholar
  44. 44.
    P. Liu and M. Zhao (2009). Appl. Surf. Sci. 255, 3989.CrossRefGoogle Scholar
  45. 45.
    Y. Zhou, L. Tang, G. Zeng, J. Chen, J. Wang, C. Fan, G. Yang, Y. Zhang, and X. Xie (2015). Biosens. Bioelectron. 65, 382–389.CrossRefGoogle Scholar
  46. 46.
    V. Thangaraj, S. Mahmud, W. Li, F. Yang, and H. Liu (2018). IET Nanobiotechnol. 12, 47.CrossRefGoogle Scholar
  47. 47.
    Y. Hu, Q. Zhang, Z. Guo, S. Wang, C. Du, and C. Zhai (2017). Biosens. Bioelectron. 98, 91.CrossRefGoogle Scholar
  48. 48.
    S. Pethkar, M. Aslam, I. S. Mulla, P. Ganeshan, and K. Vijayamohanan (2001). J. Mater. Chem. 11, 1710.CrossRefGoogle Scholar
  49. 49.
    G. Maduraiveeran, V. Tamil Mani, and R. Ramaraj (2011). Curr. Sci. 100, 199.Google Scholar
  50. 50.
    G. Schmid (ed.) Clusters and Colloids (VCH, New York, 1994).Google Scholar
  51. 51.
    J. Sun, F. Yang, D. Zhao, C. Chen, and X. Yang (2015). ACS Appl. Mater. Interfaces 7, 6860.CrossRefGoogle Scholar
  52. 52.
    B. Khalili Najafabadi and J. F. Corrigan (2015). Chem. Commun. 51, 665.CrossRefGoogle Scholar
  53. 53.
    J.-C. Chen, A. Beyer, B. Haas, K. Volz, W. Heimbrodt, J. M. Montenegro Martos, W. Chang, and W.J. Parak (2012). Langmuir 28, 8915.CrossRefGoogle Scholar
  54. 54.
    S. Roy, A. Baral, and A. Banerjee (2014). ACS Appl. Mater. Interfaces 6, 4050.CrossRefGoogle Scholar
  55. 55.
    Y. Zhou, M. Chen, Y. Zhuo, Y. Chai, W. Xu, and R. Yuan (2017). Anal. Chem. 89, 6787.CrossRefGoogle Scholar
  56. 56.
    L. Zhang, Y. Wang, L. Shen, J. Yu, S. Ge, and M. Yan (2017). Analyst 142, 2587.CrossRefGoogle Scholar
  57. 57.
    J.-H. Park, J.-K. Park, and H.-Y. Shi (2007). Mater. Lett. 61, 156.CrossRefGoogle Scholar
  58. 58.
    M. Govindhan and A. Chen (2016). Microchim. Acta 183, 2879.CrossRefGoogle Scholar
  59. 59.
    R. C. Engstrom (1982). Anal. Chem. 54, 2310.CrossRefGoogle Scholar
  60. 60.
    Dirk L. Van Hyning and Charles F. Zukoski (2001). Langmuir 17, 3120.CrossRefGoogle Scholar
  61. 61.
    G. Maduraiveeran and R. Ramaraj (2009). Anal. Chem. 81, 7552.CrossRefGoogle Scholar
  62. 62.
    G. Maduraiveeran, M. Kundu, and M. Sasidharan (2018). J. Mater. Sci. 53, 8328.Google Scholar
  63. 63.
    J. Ghilane, F. R. Fan, A. J. Bard, and N. Dunwoody (2007). Nano Lett. 7, 1406.CrossRefGoogle Scholar
  64. 64.
    C. Busche, L. Vila-Nadal, J. Yan, H. N. Miras, D. L. Long, V. P. Georgiev, A. Asenov, R. H. Pedersen, N. Gadegaard, M. M. Mirza, D. J. Paul, J. M. Poblet, and L. Cronin (2014). Nature 515, 545.CrossRefGoogle Scholar
  65. 65.
    L. Yuan, J. Liu, Z. Xia, S. Wang, and G. Sun (2014). Electrochim. Acta 135, 168.CrossRefGoogle Scholar
  66. 66.
    D. Duan, X. You, H. Wei, and S. Liu (2015). J. Power Sources 293, 292.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • G. M. Kalaiyarasi
    • 1
  • R. Elakkiya
    • 1
  • M. Kundu
    • 1
  • W. Jin
    • 2
  • M. Sasidharan
    • 1
  • G. Maduraiveeran
    • 1
    Email author
  1. 1.Department of Chemistry & Research InstituteSRM Institute of Science and TechnologyChennaiIndia
  2. 2.National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations