Facile Green Synthesis of SnO2 NPs Using Vitex altissima (L.) Leaves Extracts: Characterization and Evaluation of Antibacterial and Anticancer Properties

  • S. Bhavana
  • Vinod Gubbiveeranna
  • C. G. Kusuma
  • H. Ravikumar
  • C. K. Sumachirayu
  • H. Nagabhushana
  • S. NagarajuEmail author
Original Paper


An eco-friendly approach is introduced for the synthesis of SnO2 nanoparticles using the Vitex altissima L. plant extract. Bioinspired mediated synthesis of nanoparticles have been suggested as a very simple, inexpensive, non-toxic and environmental manner. The presence of biomolecules in V. altissima induced the metal salts to form metal oxides. The prepared SnO2 NPs were characterized by XRD, UV–Vis, FT-IR, SEM and TEM Techniques. The PXRD patterns revealed that SnO2 nanoparticles exhibits tetragonal structure and its average crystallite size of SnO2 NPs is found in the range of ~ 10 to 20 nm. The UV–visible absorption spectrum of SnO2 nanoparticles showed absorption band at 257 nm and its band gap was found to be 4.18 eV. FTIR spectrum of green synthesized SnO2 NPs shows the band at 534.22 cm−1 which indicates O–Sn–O stretching vibration modes. The morphological features of SnO2 nanoparticles were fundamentally dependent up on concentration of V. altissima leaves extract. Green synthesized SnO2 nanoparticles exhibit significant antibacterial activity against pathogenic bacterial strains by agar well diffusion method. Furthermore, the SnO2 NPs shows significant cytotoxic effect on MCF-7 cancerous cell line. This result indicates that, V. altissima leaves extract acts as a reducing agent for the formations of SnO2 NPs with effective biological properties.


Green synthesis SnO2 NPs Antibacterial activity Anticancer activity 



The authors are grateful to the UGC-RGNF, New Delhi, Government of India for financial assistance and also thanks for Tumkur University, proving the laboratories for research works are gratefully acknowledged.


  1. 1.
    G. Madhumitha and S. M. Roopan (2013). J. Nanomater. 951858, 1–12.CrossRefGoogle Scholar
  2. 2.
    R. Kumar, S. M. Roopan, A. Prabhakaran, V. G. Khanna, and S. Chakraborty (2012). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 90, 173–176.CrossRefGoogle Scholar
  3. 3.
    S. Harikrishnan and S. Kalaiselvam (2012). Thermochim. Acta 533, 46–55.CrossRefGoogle Scholar
  4. 4.
    F. Du, Z. Guo, and G. Li (2005). Mater. Lett. 59, 2563.CrossRefGoogle Scholar
  5. 5.
    S. Fujihara, T. Maeda, H. Ohgi, E. Hosono, H. Imai, and S.H. Kim (2004). Langmuir 20, 6476–6481.CrossRefGoogle Scholar
  6. 6.
    Y. Liu, E. Koep, and M. Liu (2005). Chem. Mater. 17, 3997–4000.CrossRefGoogle Scholar
  7. 7.
    Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang (2002). J. Phys. Chem. B 106, 1274–1279.CrossRefGoogle Scholar
  8. 8.
    J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee (2002). J. Phys. Chem. B 106, 3823–3826.CrossRefGoogle Scholar
  9. 9.
    F. Pourfayaz, A. Khodadadi, Y. Mortazavi, and S. S. Mohajerzadeh (2005). Sens. Actuators B 108, 172–176.CrossRefGoogle Scholar
  10. 10.
    G. Rajkumar, A. A. Rahuman, S. M. Roopan, V. G. Khanna, G. Elango, C. Kamaraj, A. A. Zahir, and K. Velayutham (2012). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 91, 23–29.CrossRefGoogle Scholar
  11. 11.
    S. M. Roopan, R. G. Madhumitha, A. A. Rahuman, C. Kamaraj, A. Bharathi, and T. V. Surendra (2013). Ind. Crop. Prod. 43, 631–635.CrossRefGoogle Scholar
  12. 12.
    J. Pal and P. Chauhan (2009). Mater. Charact. 60, 1512–1516.CrossRefGoogle Scholar
  13. 13.
    J. Malleshappa, H. Nagabhushana, S. C. Prashantha, S. C. Sharma, N. Dhananjaya, C. Shivakumara, and B. M. Nagabhushana (2014). J. Alloys Compd. 612, 425–434.CrossRefGoogle Scholar
  14. 14.
    C. Sridhar, K. V. Rao, and G. V. Subbaraju (2005). Phytochemistry 66, 1707–1712.CrossRefGoogle Scholar
  15. 15.
    D. Suresh, N. Udayabhanu, P. C. Nethravathi, K. Lingaraju, H. Rajanaika, S. C. Sharma, and H. Nagabhushana (2015). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 1467–1474.CrossRefGoogle Scholar
  16. 16.
    A. K. Ramasami, H. Rajanaika, H. Nagabhushana, T. Ramakrishnappa, G. R. Balakrishna, and G. Nagaraju (2015). Mater. Charact. 99, 266–276.CrossRefGoogle Scholar
  17. 17.
    G. Elango, S. Manoj Kumaran, S. Santhosh Kumar, S. Muthuraja, and S. M. Roopan (2015). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 145, 176–180.CrossRefGoogle Scholar
  18. 18.
    K. Manjunath, T. N. Ravishankar, D. Kumar, K. P. Priyanka, T. Varghese, H. Rajanaika, H. Nagabhushana, S. C. Sharma, J. Dupont, T. Ramakrishnappa, and G. Nagaraju (2014). Mater. Res. Bull. 57, 325–334.CrossRefGoogle Scholar
  19. 19.
    H. Rajanaika and V. Krishna (2006). Int. J. Biomed. Pharm. Sci. 1, 69–72.Google Scholar
  20. 20.
    K. Lingaraju, H. Rajanaika, K. Manjunath, G. Nagaraju, D. Suresh, and H. Nagabhushana (2015). Acta Metall. Sin. 28, 1134–1140.CrossRefGoogle Scholar
  21. 21.
    H. Rajanaika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh, and H. Nagabhushana (2015). J. Taibah Univ. Sci. 9, 7–12.CrossRefGoogle Scholar
  22. 22.
    H. R. Prakash Naik, H. S. Bhojya Naik, T. R. Ravikumar Naik, H. Rajanaika, K. Gouthamchandra, R. Mahmood, and B. M. Khadeer Ahamed (2009). Eur. J. Med. Chem. 44, 981–989.CrossRefGoogle Scholar
  23. 23.
    J. Wang, X. X. Du, H. Jiang, and J. X. Xie (2009). Biochem. Pharmacol. 78, 178–183.CrossRefGoogle Scholar
  24. 24.
    H. Nagabhushana, D. V. Sunitha, S. C. Sharma, B. D. Prasad, B. M. Nagabhushana, and R. P. S. Chakradhar (2014). J. Alloys Compd. 575, 192–199.CrossRefGoogle Scholar
  25. 25.
    J. Malleshappa, H. Nagabhushana, S. C. Sharma, Y. S. Vidya, K. S. Anantharaju, S. C. Prashantha, B. Daruka Prasad, H. Rajanaika, K. Lingaraju, and B. S. Surendra (2015). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 452–462.CrossRefGoogle Scholar
  26. 26.
    H. B. Premkumar, H. Nagabhushana, S. C. Sharma, S. C. Prashantha, H. P. Nagaswarupa, B. M. Nagabhushana, and R. P. S. Chakradhar (2014). J. Alloys Compd. 601, 75–84.CrossRefGoogle Scholar
  27. 27.
    R. Bhatt, I. Bhaumik, S. Ganesamoorthy, A. K. Karnal, M. K. Swami, H. S. Patel, and P. K. Gupta (2012). Phys. Stat. Solid A 209, 176–180.CrossRefGoogle Scholar
  28. 28.
    Y. Liu, F. Yang, and X. Yang (2008). Colloid Surf. A 312, 219–225.CrossRefGoogle Scholar
  29. 29.
    N. Srivastava and M. Mukhopadhyay (2014). Ind. Eng. Chem. Res. 53, 13971–13979.CrossRefGoogle Scholar
  30. 30.
    S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelinek, and A. Gedanken (2005). Adv. Func. Mater. 15, 1708–1715.CrossRefGoogle Scholar
  31. 31.
    L. Zhang, Y. Jiang, Y. Ding, M. Povey, and D. York (2007). J. Nano. Res. 9, 479–489.CrossRefGoogle Scholar
  32. 32.
    M. I. Sriram, S. B. Kanth, K. Kalishwaralal, and S. Gurunathan (2010). Int. J. Nano Med. 5, 753–762.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Bhavana
    • 1
  • Vinod Gubbiveeranna
    • 1
  • C. G. Kusuma
    • 1
  • H. Ravikumar
    • 2
  • C. K. Sumachirayu
    • 1
  • H. Nagabhushana
    • 3
  • S. Nagaraju
    • 1
    Email author
  1. 1.Department of Studies and Research in BiochemistryTumkur UniversityTumakuruIndia
  2. 2.Department of Life Science, Jnana Bharthi CampusBangalore UniversityBangaloreIndia
  3. 3.Department of Studies and Research in Physics, Prof. C.N.R. Rao BlockTumkur UniversityTumakuruIndia

Personalised recommendations