Advertisement

Stepwise Fragmentation of Asymmetric Triangular Shape Ln3 Cluster and Magnetocaloric Effect of Gd3 Analogue

  • Qian-Jun Deng
  • Hai-Ling Wang
  • Zhong-Hong ZhuEmail author
  • Xiong-Feng Ma
  • Kan-Zai Huang
  • Ming-Liang Huang
  • Hua-Hong ZouEmail author
Original Paper
  • 18 Downloads

Abstract

N-Methylbenzimidazole-2-methanol (L) and Ln(NO3)3·6H2O are dissolved in a mixed solvent of methanol and acetonitrile and then reacted at 80 °C to obtain [Ln3(L)5(NO3)4] (Ln3, Ln = Gd, Tb). In Ln3, three L are located in the same plane as the three Ln3+ ions, and the other two L are located above and below the plane, respectively. Two of the four NO3 ions are respectively coordinated with two Ln3+, and the other two are coordinated with one Ln3+ ion, which results in the asymmetry of the above-described triangular shape Ln3. When the Ln3 single crystal was tested by Electrospray Ionization Mass Spectrometry, the main frame [Ln3L5(NO3)3]+ was found to be stable, only one NO3ion was lost. As the energy of the ion source increases, we observe the gradual fragmentation of the triangular shape Ln3, and propose that the fragmentation mechanism is: Ln3L5 → Ln3L4 → Ln2L4 → Ln2L3 → Ln2L2 → LnL. This provides the basis for the assembly of triangular shaped Ln3 clusters. For the first time, the magnetocaloric effect (MCE) of triangular Gd3 clusters was studied and it exhibited a large MCE of 10.65 J kg−1 K−1 at 7 K for ΔH = 5 T.

Keywords

Stepwise fragmentation Asymmetric triangular shape Magnetocaloric effect 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21601038), Guangxi Natural Science Foundation (2016GXNSFAA380085). The Science and Technique Innovation Foundation of Foshan City (2017AB004041); Major Scientific Research Programs of Foshan University.

Supplementary material

10876_2019_1495_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1098 kb)

References

  1. 1.
    C. J. Brown, F. D. Toste, R. G. Bergman, and K. N. Raymond (2015). Chem. Rev. 115, 3012.CrossRefGoogle Scholar
  2. 2.
    Q. M. Wang, Y. M. Lin, and K. G. Liu (2015). Acc. Chem. Res. 48, 1570.CrossRefGoogle Scholar
  3. 3.
    X. J. Kong, L. S. Long, Z. P. Zheng, R. B. Huang, and L. S. Zheng (2010). Acc. Chem. Res. 43, 201.CrossRefGoogle Scholar
  4. 4.
    F. Xu, H. Miras, R. Scullion, D. L. Long, J. Thiel, and L. Cronin (2012). Proc. Natl. Acad. Sci. USA 109, 11609.CrossRefGoogle Scholar
  5. 5.
    Z.-H. Zhu, X.-F. Ma, H.-L. Wang, H.-H. Zou, K.-Q. Mo, Y.-Q. Zhang, Q.-Z. Yang, B. Li, and F.-P. Liang (2018). Inorg. Chem. Front. 5, 3155.CrossRefGoogle Scholar
  6. 6.
    H. Li, T. Sheng, Z. Xue, X. Zhu, S. Hu, Y. Wen, R. Fu, C. Zhuo, and X. Wu (2017). Cryst. Eng. Comm. 19, 2106.CrossRefGoogle Scholar
  7. 7.
    M. M. Hänninen, A. J. Mota, D. Aravena, E. Ruiz, R. Sillanpää, A. Camón, M. Evangelisti, and E. Colacio (2014). Chem. Eur. J. 20, 8410.CrossRefGoogle Scholar
  8. 8.
    M. J. Kobyłka, K. Ślepokura, M. A. Rodicio, M. Paluch, and J. Lisowski (2013). Inorg. Chem. 52, 12893.CrossRefGoogle Scholar
  9. 9.
    J.-P. Costes, F. Dahan, and F. Nicodème (2012). Inorg. Chem. 40, 5285.CrossRefGoogle Scholar
  10. 10.
    L.-J. Wu, H. Yang, S.-Y. Zeng, D.-C. Li, and J.-M. Dou (2017). Polyhedron 129, 77.CrossRefGoogle Scholar
  11. 11.
    X.-Y. Zheng, J.-B. Peng, X.-J. Kong, L.-S. Long, and L.-S. Zheng (2016). Inorg. Chem. Front. 3, 320.CrossRefGoogle Scholar
  12. 12.
    L. Ungur, S.-Y. Lin, J. Tang, and L. F. Chibotaru (2014). Chem. Soc. Rev. 43, 6894.CrossRefGoogle Scholar
  13. 13.
    L. F. Chibotaru, L. Ungur, and A. Soncini (2008). Angew. Chem., Int. Ed. 47, 4126.CrossRefGoogle Scholar
  14. 14.
    J. Tang, I. Hewitt, N. T. Madhu, G. Chastanet, W. Wernsdorfer, C. E. Anson, C. Benelli, R. Sessoli, and A. K. Powell (2006). Angew. Chem., Int. Ed. 45, 1729.CrossRefGoogle Scholar
  15. 15.
    J. Wu, X.-L. Li, L. Zhao, M. Guo, and J. Tang (2017). Inorg. Chem. 56, 4104.CrossRefGoogle Scholar
  16. 16.
    Y.-L. Hou, G. Xiong, P.-F. Shi, R.-R. Cheng, J.-Z. Cui, and B. Zhao (2013). Chem. Commun. 49, 6066.CrossRefGoogle Scholar
  17. 17.
    S. Sanz, R. D. McIntosh, C. M. Beavers, S. J. Teat, M. Evangelisti, E. K. Brechin, and S. J. Dalgarno (2012). Chem. Commun. 48, 1449.CrossRefGoogle Scholar
  18. 18.
    G. Sheldrick (2015). Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 71, 3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Material Science and Energy EngineeringFoshan UniversityFoshanPeople’s Republic of China
  2. 2.State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal UniversityGuilinPeople’s Republic of China

Personalised recommendations