Advertisement

High Coverage CO Adsorption on Fe6O6 Cluster Using GGA + U

  • Xiaohu YuEmail author
  • Lingxia Jin
  • Caibin Zhao
  • Zhong LiuEmail author
Brief Communication
  • 49 Downloads

Abstract

The adsorption of CO molecules on Fe6O6 cluster was systematically studied at different coverage by GGA + U calculations and atomic thermodynamics. Starting from single CO molecule adsorption on Fe6O6 cluster, we have varied the concentration and configuration of CO molecules. It has been found that one surface iron atom of Fe6O6 cluster can coadsorb two CO molecules which can be explained well by the spatial effect. The phase diagrams show that twelve CO molecules binding on Fe6O6 cluster is favorable thermodynamically. It has been found that six CO molecules binding on Fe6O6 cluster is the saturation adsorption according to the stepwise adsorption energy, and the different adsorption states can coexist for two-CO molecules binding on Fe6O6 cluster at high temperature according to probability distribution plot. The adsorption mechanism of CO on Fe6O6 cluster was analyzed by the projected density of states and compared with Fe3O4 surfaces and other small iron oxide clusters.

Keywords

DFT + U CO Water–gas shift reaction Fe6O6 Fischer–Tropsch synthesis Adsorption 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 21603133, U1607105), National Science Foundation of Henan Province (No. 162300410001), Special Funding for Transformation of Scientic and Technological Achievements in Qinghai Province (No. 2018-GX-101) and Natural Science Foundation of Shaanxi University of Technology (No. SLGQD1809). This work was also supported by team of syngas catalytic conversion of Shaanxi University of Technology. Calculations were performed by using Hanren-Laojia supercomputer at Shaanxi University of Technology and high performance center National Supercomputer Center in Guangzhou.

Supplementary material

10876_2018_1485_MOESM1_ESM.doc (1.7 mb)
The computed less stable adsorption configurations of CO on Fe6O6; the full description of atomic thermodynamics methods (DOC 1700 kb)

References

  1. 1.
    C. F. R. Lund, E. K. Joseph, and J. A. Dumesic Solid State Chemistry in Catalysis, vol. 279 (American Chemical Society, Washington, DC, 1985), p. 313.CrossRefGoogle Scholar
  2. 2.
    C. Ratnasamy and J. Wagner (2009). Catal. Rev. 51, 325.CrossRefGoogle Scholar
  3. 3.
    E. de Smit and B. Weckhuysen (2008). Chem. Soc. Rev. 37, 2758.CrossRefGoogle Scholar
  4. 4.
    E. de Smit, I. Swart, J. Creemer, G. Hoveling, M. Gilles, T. Tyliszczak, P. Kooyman, H. Zandbergen, C. Morin, and B. Weckhuysen (2008). Nature 456, 222.CrossRefGoogle Scholar
  5. 5.
    Z.-H. Lu and Q. Xu (2011). J. Chem. Phys. 134, 034305.CrossRefGoogle Scholar
  6. 6.
    J. H. Jang, J. G. Lee, H. Lee, Y. Xie, and H. F. Schaefer (1998). J. Phys. Chem. A 102, 5298.CrossRefGoogle Scholar
  7. 7.
    Q. Li, Y.-N. Li, T. Wang, S.-G. Wang, C.-F. Huo, Y.-W. Li, J. Wang, and H. Jiao (2013). Chemphyschem 14, 1573.CrossRefGoogle Scholar
  8. 8.
    H. Wang, Y. Xie, R. B. King, and H. F. Schaefer (2006). J. Am. Chem. Soc. 128, 11376.CrossRefGoogle Scholar
  9. 9.
    C. Chi, H. Qu, L. Meng, F. Kong, M. Luo, and M. Zhou (2017). Angew. Chem. Int. Ed. 56, 14096.CrossRefGoogle Scholar
  10. 10.
    X. Yu, X. Zhang, Y. Meng, Y. Zhao, Y. Li, W. Xu, and Z. Liu (2018). Appl. Surf. Sci. 434, 464.CrossRefGoogle Scholar
  11. 11.
    M. Bortoluzzi, I. Ciabatti, C. Cesari, C. Femoni, M. C. Iapalucci, and S. Zacchini (2017). Eur. J. Inorg. Chem. 2017, 3135.CrossRefGoogle Scholar
  12. 12.
    T. J. Udovic and J. A. Dumesic (1984). J. Catal. 89, 314.CrossRefGoogle Scholar
  13. 13.
    D.-M. Huang, D.-B. Cao, Y.-W. Li, and H. Jiao (2006). J. Phys. Chem. B 110, 13920.CrossRefGoogle Scholar
  14. 14.
    M. Watanabe and T. Kadowaki (1987). Appl. Surf. Sci. 28, 147.CrossRefGoogle Scholar
  15. 15.
    C. Chi, J.-Q. Wang, H. Qu, W.-L. Li, L. Meng, M. Luo, J. Li, and M. Zhou (2017). Angew. Chem. Int. Ed. 56, 6932.CrossRefGoogle Scholar
  16. 16.
    H. Shiroishi, T. Oda, I. Hamada, and N. Fujima (2003). Eur. Phys. J D 24, 85.CrossRefGoogle Scholar
  17. 17.
    H. Wu, S. R. Desai, and L.-S. Wang (1996). J. Am. Chem. Soc. 118, 5296.CrossRefGoogle Scholar
  18. 18.
    L.-S. Wang, H. Wu, and S. R. Desai (1996). Phys. Rev. Lett. 76, 4853.CrossRefGoogle Scholar
  19. 19.
    A. Kirilyuk, A. Fielicke, K. Demyk, G. von Helden, G. Meijer, and T. Rasing (2010). Phys. Rev. B 82, 020405.CrossRefGoogle Scholar
  20. 20.
    B. V. Reddy and S. N. Khanna (2004). Phys. Rev. Lett. 93, 068301.CrossRefGoogle Scholar
  21. 21.
    G. L. Gutsev, S. N. Khanna, B. K. Rao, and P. Jena (1999). Phys. Rev. A 59, 3681.CrossRefGoogle Scholar
  22. 22.
    X. Yu, A. R. Oganov, Q. Zhu, F. Qi, and G.-R. Qian (2018). Phys. Chem. Chem. Phys. 20, 30437.CrossRefGoogle Scholar
  23. 23.
    N. O. Jones, B. V. Reddy, F. Rasouli, and S. N. Khanna (2005). Phys. Rev. B 72, 165411.CrossRefGoogle Scholar
  24. 24.
    X.-L. Ding, W. Xue, Y.-P. Ma, Z.-C. Wang, and S.-G. He (2009). J. Chem. Phys. 130, 014303.CrossRefGoogle Scholar
  25. 25.
    A. Erlebach, C. Huhn, R. Jana, and M. Sierka (2014). Phys. Chem. Chem. Phys. 16, 26421.CrossRefGoogle Scholar
  26. 26.
    G. L. Gutsev, K. G. Belay, L. G. Gutsev, and B. R. Ramachandran (2016). J. Comput. Chem. 37, 2527.CrossRefGoogle Scholar
  27. 27.
    A. Mejía-López, J. Mazo-Zuluaga, and J. Mejía-López (2016). J. Phys. Condens. Matter 28, 485002.CrossRefGoogle Scholar
  28. 28.
    B. V. Reddy, F. Rasouli, M. R. Hajaligol, and S. N. Khanna (2004). Chem. Phys. Lett. 384, 242.CrossRefGoogle Scholar
  29. 29.
    B. V. Reddy, F. Rasouli, M. R. Hajaligol, and S. N. Khanna (2004). Fuel 83, 1537.CrossRefGoogle Scholar
  30. 30.
    N. M. Reilly, J. U. Reveles, G. E. Johnson, S. N. Khanna, and A. W. Castleman Jr. (2007). Chem. Phys. Lett. 435, 295.CrossRefGoogle Scholar
  31. 31.
    N. M. Reilly, J. U. Reveles, G. E. Johnson, S. N. Khanna, and A. W. Castleman (2007). J. Phys. Chem. A 111, 4158.CrossRefGoogle Scholar
  32. 32.
    N. M. Reilly, J. U. Reveles, G. E. Johnson, J. M. del Campo, S. N. Khanna, A. M. Köster, and A. W. Castleman (2007). J. Phys. Chem. C 111, 19086.CrossRefGoogle Scholar
  33. 33.
    W. Xue, Z.-C. Wang, S.-G. He, Y. Xie, and E. R. Bernstein (2008). J. Am. Chem. Soc. 130, 15879.CrossRefGoogle Scholar
  34. 34.
    V. Chauhan, A. C. Reber, and S. N. Khanna (2017). Phys. Chem. Chem. Phys. 19, 31940.CrossRefGoogle Scholar
  35. 35.
    G. L. Gutsev, K. G. Belay, L. G. Gutsev, B. R. Ramachandran, and P. Jena (2018). Phys. Chem. Chem. Phys. 20, 4546.CrossRefGoogle Scholar
  36. 36.
    X. Yu, C.-F. Huo, Y.-W. Li, J. Wang, and H. Jiao (2012). Surf. Sci. 606, 872.CrossRefGoogle Scholar
  37. 37.
    V. Anisimov, I. S. Elfimov, N. Hamada, and K. Terakura (1996). Phys. Rev. B 54, 4387.CrossRefGoogle Scholar
  38. 38.
    R. Logemann, G. A. de Wijs, M. I. Katsnelson, and A. Kirilyuk (2015). Phys. Rev. B 92, 144427.CrossRefGoogle Scholar
  39. 39.
    K. Palotás, A. N. Andriotis, and A. Lappas (2010). Phys. Rev. B 81, 075403.CrossRefGoogle Scholar
  40. 40.
    X. Yu, X. Zhang, and X.-W. Yan (2018). Nano Res. 11, 3574.CrossRefGoogle Scholar
  41. 41.
    S. López, A. H. Romero, J. Mejía-López, J. Mazo-Zuluaga, and J. Restrepo (2009). Phys. Rev. B 80, 085107.CrossRefGoogle Scholar
  42. 42.
    H. J. Kulik and N. Marzari (2011). J. Chem. Phys. 134, 094103.CrossRefGoogle Scholar
  43. 43.
    X. Sun, M. Kurahashi, A. Pratt, and Y. Yamauchi (2011). Surf. Sci. 605, 1067.CrossRefGoogle Scholar
  44. 44.
    G. S. Parkinson, N. Mulakaluri, Y. Losovyj, P. Jacobson, R. Pentcheva, and U. Diebold (2010). Phys. Rev. B 82, 125413.CrossRefGoogle Scholar
  45. 45.
    M. Kurahashi, X. Sun, and Y. Yamauchi (2010). Phys. Rev. B 81, 193402.CrossRefGoogle Scholar
  46. 46.
    N. Mulakaluri, R. Pentcheva, and M. Scheffler (2010). J. Phys. Chem. C 114, 11148.CrossRefGoogle Scholar
  47. 47.
    N. Mulakaluri, R. Pentcheva, M. Wieland, W. Moritz, and M. Scheffler (2009). Phys. Rev. Lett. 103, 176102.CrossRefGoogle Scholar
  48. 48.
    X. Yu, Y. Li, Y.-W. Li, J. Wang, and H. Jiao (2013). J. Phys. Chem. C 117, 7648.CrossRefGoogle Scholar
  49. 49.
    X. Yu, X. Zhang, and S. Wang (2015). Appl. Surf. Sci. 353, 973.CrossRefGoogle Scholar
  50. 50.
    X. Yu, X. Zhang, S. Wang, and G. Feng (2015). RSC Adv. 5, 45446.CrossRefGoogle Scholar
  51. 51.
    X. Yu, X. Tian, and S. Wang (2014). Surf. Sci. 628, 141.CrossRefGoogle Scholar
  52. 52.
    X. Yu, X. Zhang, L. Jin, and G. Feng (2017). Phys. Chem. Chem. Phys. 19, 17287.CrossRefGoogle Scholar
  53. 53.
    X. Yu, S.-G. Wang, Y.-W. Li, J. Wang, and H. Jiao (2012). J. Phys. Chem. C 116, 10632.CrossRefGoogle Scholar
  54. 54.
    G. Kresse and D. Joubert (1999). Phys. Rev. B 59, 1758.CrossRefGoogle Scholar
  55. 55.
    G. Kresse and J. Furthmüller (1996). Comp. Mater. Sci. 6, 15.CrossRefGoogle Scholar
  56. 56.
    G. Kresse and J. Furthmüller (1996). Phys. Rev. B 54, 11169.CrossRefGoogle Scholar
  57. 57.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  58. 58.
    P. E. Blöchl (1994). Phys. Rev. B 50, 17953.CrossRefGoogle Scholar
  59. 59.
    V. Anisimov, J. Zaanen, and O. Andersen (1991). Phys. Rev. B 44, 943.CrossRefGoogle Scholar
  60. 60.
    A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen (1995). Phys. Rev. B 52, R5467.CrossRefGoogle Scholar
  61. 61.
    R. Bliem, E. McDermott, P. Ferstl, M. Setvin, O. Gamba, J. Pavelec, M. A. Schneider, M. Schmid, U. Diebold, P. Blaha, L. Hammer, and G. S. Parkinson (2014). Science 346, 1215.CrossRefGoogle Scholar
  62. 62.
    H. J. Monkhorst and J. D. Pack (1976). Phys. Rev. B 13, 5188.CrossRefGoogle Scholar
  63. 63.
    X. Yu, A. R. Oganov, I. A. Popov, and A. I. Boldyrev (2016). J. Comput. Chem. 37, 103.CrossRefGoogle Scholar
  64. 64.
    J. Heyd, G. E. Scuseria, and M. Ernzerhof (2003). J. Chem. Phys. 118, 8207.CrossRefGoogle Scholar
  65. 65.
    J. Heyd and G. E. Scuseria (2004). J. Chem. Phys. 121, 1187.CrossRefGoogle Scholar
  66. 66.
    M. Nolan and G. W. Watson (2006). J. Phys. Chem. B 110, 16600.CrossRefGoogle Scholar
  67. 67.
    O. R. Gilliam, C. M. Johnson, and W. Gordy (1950). Phys. Rev. 78, 140.CrossRefGoogle Scholar
  68. 68.
    D.-B. Cao, F.-Q. Zhang, Y.-W. Li, and H. Jiao (2004). J. Phys. Chem. B 108, 9094.CrossRefGoogle Scholar
  69. 69.
    S. Bhattacharya, S. V. Levchenko, L. M. Ghiringhelli, and M. Scheffler (2013). Phys. Rev. Lett. 111, 135501.CrossRefGoogle Scholar
  70. 70.
    X. Yu, A. R. Oganov, I. A. Popov, G. Qian, and A. I. Boldyrev (2016). Angew. Chem. Int. Ed. 55, 1699.CrossRefGoogle Scholar
  71. 71.
    X. Yu, X. Zhang, H. Wang, Z. Wang, and G. Feng (2017). J. Phys. Chem. C 121, 22081.CrossRefGoogle Scholar
  72. 72.
    X. Yu, X. Zhang, H. Wang, and G. Feng (2017). Appl. Surf. Sci. 425, 803.CrossRefGoogle Scholar
  73. 73.
    X. Yu and X. Zhang (2017). Phys. Chem. Chem. Phys. 19, 18652.CrossRefGoogle Scholar
  74. 74.
    X. Yu, C. Zhao, T. Zhang, and Z. Liu (2018). Phys. Chem. Chem. Phys. 20, 20352.CrossRefGoogle Scholar
  75. 75.
    X. Yu, X. Zhang, S. Wang, and G. Feng (2015). Appl. Surf. Sci. 343, 33.CrossRefGoogle Scholar
  76. 76.
    W.-X. Li, C. Stampfl, and M. Scheffler (2003). Phys. Rev. Lett. 90, 256102.CrossRefGoogle Scholar
  77. 77.
    K. Reuter and M. Scheffler (2003). Phys. Rev. Lett. 90, 46103.CrossRefGoogle Scholar
  78. 78.
    K. Reuter and M. Scheffler (2001). Phys. Rev. B 65, 35406.CrossRefGoogle Scholar
  79. 79.
    E. L. Uzunova and H. Mikosch (2014). J. Chem. Phys. 140, 024303.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of TechnologyHanzhongChina
  2. 2.Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt LakesChinese Academy of SciencesXiningChina

Personalised recommendations