Journal of Cluster Science

, Volume 30, Issue 1, pp 243–249 | Cite as

A Bifunctional Metal–Organic Framework Based on Linear Trinuclear Clusters for Solvent-Free Aldehyde Cyanosilylation and Growth Inhibition of Human Breast Cancer Cells

  • Zhi-Jun Ma
  • Shih-Hsin LuEmail author
Original Paper


By using a rigid Y-shaped biphenyl-3,4′,5-tricarboxylic acid (H3bpt) organic ligand, a new cluster-based metal-organic framework (MOF) with the chemical formula of {[Cu3(bpt)2(H2O)4](DMA)(MeOH)2}n (1, DMA = N,N-dimethylacetamide) was synthesized under solvothermal condition. The structure of 1 was determined by single-crystal X-ray diffraction analyses (SCXRD) and further characterized by elemental analyses, IR spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric (TG) analyses and gas sorption measurements. The SCXRD result reveals that complex 1 exhibits a 3D framework with 1D channels which contains opposite-handedness helical chains based on the trinuclear Cu(II) clusters. Considering its high pore volume and accessible open metal sites, complex 1 as well as its activated form (1a) was studied for cyanosilylation of aldehydes under solvent-free conditions, which reveals that 1a shows much better catalytic performance than that of 1, indicating the open metal sites play important roles in the catalytic process. Furthermore, the anticancer activates of complex 1 and 1a has been evaluated on three human breast cancer cells (MDA-MB-231, MDA-MB-468 and Hst578) via the MTT assay.


Metal-organic framework Biphenyl-3,4’,5-tricarboxylic acid Cluster-based unit Cyanosilylation reaction Breast cancer cell 

Supplementary material

10876_2018_1483_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1656 kb)
10876_2018_1483_MOESM2_ESM.cif (1 mb)
Supplementary material 2 (CIF 1034 kb)


  1. 1.
    J. J. Song, F. Gallou, J. T. Reeves, Z. Tan, N. K. Yee, and C. H. Senanayake (2006). J. Org. Chem. 71, 1273.CrossRefGoogle Scholar
  2. 2.
    N. Kurono and T. Ohkuma (2016). ACS Catal. 6, 989.CrossRefGoogle Scholar
  3. 3.
    Z. Ma, A. V. Gurbanov, M. Sutradhar, M. N. Kopylovich, K. T. Mahmudov, A. M. Maharramov, F. I. Guseinov, F. I. Zubkov, and A. J. L. Pombeiro (2017). Mol. Catal. 428, 17.CrossRefGoogle Scholar
  4. 4.
    J. Li, T. Yu, M. Luo, Q. Xiao, W. Yao, L. Xu, and M. Ma (2018). J. Organomet. Chem. 874, 83.CrossRefGoogle Scholar
  5. 5.
    A. V. Gurbanov, K. T. Mahmudov, M. Sutradhar, F. C. Guedes da Silva, T. A. Mahmudov, F. I. Guseinov, F. I. Zubkov, A. M. Maharramov, and A. J. L. Pombeiro (2017). J. Organomet. Chem. 834, 22.CrossRefGoogle Scholar
  6. 6.
    A. de Oliveira, J. S. Alves, G. F. de Lima, and H. A. De Abreu (2018). Polyhedron 154, 98.CrossRefGoogle Scholar
  7. 7.
    A. V. Gurbanov, A. M. Maharramov, F. I. Zubkov, A. M. Saifutdinov, and F. I. Guseinov (2018). Aust. J. Chem. 71, 190.CrossRefGoogle Scholar
  8. 8.
    A. V. Gurbanov, G. Mahmoudi, M. F. C. Guedes da Silva, F. I. Zubkov, K. T. Mahmudov, and A. J. L. Pombeiro (2018). Inorganica Chim. Acta 471, 130.CrossRefGoogle Scholar
  9. 9.
    B. Atashkar, A. Rostami, and B. Tahmasbi (2013). Catal. Sci. Technol. 3, 2140.CrossRefGoogle Scholar
  10. 10.
    X. Cui, M. C. Xu, L. J. Zhang, R. X. Yao, and X. M. Zhang (2015). Dalton. Trans. 44, 12711.CrossRefGoogle Scholar
  11. 11.
    Y. Feng, H. Fan, Z. Zhong, H. Wang, and D. Qiu (2016). Inorg. Chem. 55, 11987.CrossRefGoogle Scholar
  12. 12.
    Y. Feng, M. Li, H. Fan, Q. Huang, D. Qiu, and H. Shi (2015). Dalton Trans. 44, 894.CrossRefGoogle Scholar
  13. 13.
    Y. B. Huang, J. Liang, X. S. Wang, and R. Cao (2017). Chem. Soc. Rev. 46, 126.CrossRefGoogle Scholar
  14. 14.
    D. M. Chen, N. N. Zhang, C. S. Liu, and M. Du (2017). J. Mater. Chem. C 5, 2311.CrossRefGoogle Scholar
  15. 15.
    C. W. Duan, L. X. Hu, and J. L. Ma (2018). J. Mater. Chem. A 6, 6309.CrossRefGoogle Scholar
  16. 16.
    Z. Guo, H. Xu, S. Su, J. Cai, S. Dang, S. Xiang, G. Qian, H. Zhang, M. O’Keeffe, and B. Chen (2011). Chem. Commun. 47, 5551.CrossRefGoogle Scholar
  17. 17.
    Z. Hao, G. Yang, X. Song, M. Zhu, X. Meng, S. Zhao, S. Song, and H. Zhang (2014). J. Mater. Chem. A 2, 237.CrossRefGoogle Scholar
  18. 18.
    Z. Zhang, W. Y. Gao, L. Wojtas, S. Ma, M. Eddaoudi, and M. J. Zaworotko (2012). Angew. Chemie Int. Ed. 51, 9330.CrossRefGoogle Scholar
  19. 19.
    L. Zhang, Y. Xie, T. Xia, Y. Cui, Y. Yang, and G. Qian (2018). J. Rare Earths 36, 561.CrossRefGoogle Scholar
  20. 20.
    N. Alvarez, L. F. S. Mendes, M. G. Kramer, M. H. Torre, A. J. Costa-Filho, J. Ellena, and G. Facchin (2018). Inorganica Chim. Acta 483, 61.CrossRefGoogle Scholar
  21. 21.
    K. Wang, X. Ma, D. Shao, Z. Geng, Z. Zhang, and Z. Wang (2012). Cryst. Growth Des. 12, 3786.CrossRefGoogle Scholar
  22. 22.
    A. C. Hangan, G. Borodi, R. L. Stan, E. Páll, M. Cenariu, L. S. Oprean, and B. Sevastre (2018). Inorganica Chim. Acta 482, 884.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.Cancer Institute and HospitalChinese Academy of Medical SciencesBeijingChina

Personalised recommendations