Advertisement

Journal of Cluster Science

, Volume 30, Issue 1, pp 203–218 | Cite as

A Comparative Computational Investigation of Phosgene Adsorption on (XY)12 (X = Al, B and Y = N, P) Nanoclusters: DFT Investigations

  • Rahman Padash
  • Mehdi Rahimi-NasrabadiEmail author
  • Ali Shokuhi RadEmail author
  • A. Sobhani-Nasab
  • Teofil Jesionowski
  • Hermann Ehrlich
Original Paper
  • 35 Downloads

Abstract

In this work, the adsorption of phosgene (COCl2) gas on the outer surface of Al12N12, Al12P12, B12N12 and B12P12 pristine nanoclusters is studied with regard to different aspects, including energetic, geometric and electronic properties, using the M06-2X/B97D/B3LYP//6-311g(d,p) levels of theory. The adsorption energies of phosgene molecule on the exterior surface of pure Al12N12, Al12P12, B12N12 and B12P12 nanoclusters are − 0.816, − 0.272, − 0.272 and − 0.272 eV, with optimum distances of 2.01, 3.77, 2.52, and 3.42 Å, respectively. Our results show that these combinatorial nanoclusters are able to adsorb the phosgene molecule via exothermic processes. It is demonstrated that by increasing the quantity of phosgene gas, the adsorption energy becomes less negative (except in the case of Al12P12). The Al12N12 nanocluster is more sensitive to phosgene gas than the other nanoclusters.

Keywords

Adsorption Phosgene gas Electronic structure X12Y12 Nanocluster 

References

  1. 1.
    Q. M. Wang and R. Q. Huang (2000). J. Organomet. Chem. 604, 287.Google Scholar
  2. 2.
    S. A. Cucinell and E. Arsenal (1974). Arch. Environ. Health 28, 272.Google Scholar
  3. 3.
    M. T. Baei, A. Soltani, S. Hashemian, and H. Mohammadian (2014). Can. J. Chem. 92, 605.Google Scholar
  4. 4.
    J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Sens. Actuators B 171, 846.Google Scholar
  5. 5.
    S.-K. Joung, T. Amemiya, M. Murabayashi, R. Cai, and K. Itoh (2005). Surf. Sci. 598, 174.Google Scholar
  6. 6.
    S. Virji, R. Kojima, J. D. Fowler, J. G. Villanueva, R. B. Kaner, and B. H. Weiller (2010). Nano Res. 2, 135.Google Scholar
  7. 7.
    E. Shakerzadeh, E. Khodayar, and S. Noorizadeh (2016). Comput. Mater. Sci. 118, 155.Google Scholar
  8. 8.
    G. G. Esposito, D. Lillian, G. E. Podolak, and R. M. Tuggle (1977). Anal. Chem. 49, 1774.Google Scholar
  9. 9.
    J. Amani, A. Khoshroo, and M. Rahimi-Nasrabadi (2018). Microchim. Acta. 185, 79.Google Scholar
  10. 10.
    A. Khoshroo, L. Hosseinzadeh, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, and H. Ehrlich (2018). J. Electroanal. Chem. 823, 61.Google Scholar
  11. 11.
    J. Beheshtian, M. Kamfiroozi, Z. Bagheri, and A. Ahmadi (2012). Chin. J. Chem. Phys. 25, 60.Google Scholar
  12. 12.
    J. Amani, M. Maleki, A. Khoshroo, A. Sobhani-Nasab, and M. Rahimi-Nasrabadi (2018). Anal. Biochem. 548, 53.Google Scholar
  13. 13.
    M. Aghazadeh, A. A. M. Barmi, and M. Hosseinifard (2012). Mater. Lett. 73, 28.Google Scholar
  14. 14.
    J. Beheshtian, M. Kamfiroozi, Z. Bagheri, and A. Ahmadi (2011). Physica E 44, 546.Google Scholar
  15. 15.
    H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.  https://doi.org/10.1038/318162a0.Google Scholar
  16. 16.
    M. Rahimi-Nasrabadi, A. Khoshroo, and M. Mazloum-Ardakani (2017). Sens. Actuators B 240, 125.Google Scholar
  17. 17.
    J. Beheshtian, M. Kamfiroozi, Z. Bagheri, and A. A. Peyghan (2012). Chin. J. Chem. Phys. 25, 60.  https://doi.org/10.1088/1674-0068/25/01/60-64.Google Scholar
  18. 18.
    H. R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, and M. R. Ganjali (2017). Appl. Surf. Sci. 423, 1025.Google Scholar
  19. 19.
    W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.Google Scholar
  20. 20.
    J. Beheshtian, Z. Bagheri, M. Kamfiroozi, and A. Ahmadi (2012). J. Mol. Model. 18, 2653.Google Scholar
  21. 21.
    D. L. Strout (2000). J. Phys. Chem. A 104, 3364.Google Scholar
  22. 22.
    R. Wang, D. Zhang, and C. Liu (2005). Chem. Phys. Lett. 411, 333.Google Scholar
  23. 23.
    A. Shokuhi Rad and K. Ayub (2016). J. Alloys Compd. 672, 161.Google Scholar
  24. 24.
    A. Shokuhi Rad and K. Ayub (2016). J. Alloys Compd. 678, 317.Google Scholar
  25. 25.
    A. Shokuhi Rad and K. Ayub (2016). Thin Solid Films 612, 179.Google Scholar
  26. 26.
    J. Beheshtian, Z. Bagheri, M. Kamfiroozi, and A. Ahmadi (2011). Microelectron. J. 42, 1400.Google Scholar
  27. 27.
    A. Shokuhi Rad and K. Ayub (2016). Vacuum 131, 135.Google Scholar
  28. 28.
    R. Padash, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, et al. (2018). Appl. Phys. A 124, 582.  https://doi.org/10.1007/s00339-018-1965-y.Google Scholar
  29. 29.
    A. S. Rad and K. Ayub (2018). J. Mol. Liq. 255, 168.Google Scholar
  30. 30.
    A. Shokuhi Rad (2016). Heteroat. Chem. 27, 316.Google Scholar
  31. 31.
    A. S. Rad and K. Ayub (2017). Mater. Chem. Phys. 194, 337.Google Scholar
  32. 32.
    A. S. Rad and K. Ayub (2017). J. Mol. Liq. 238, 303.Google Scholar
  33. 33.
    A. S. Rad and K. Ayub (2017). Solid State Sci. 69, 22.Google Scholar
  34. 34.
    A. S. Rad (2017). J. Nanostruct. Chem. 7, 207.Google Scholar
  35. 35.
    A. S. Rad (2017). Can. J. Chem. 95, 845.Google Scholar
  36. 36.
    A. Shokuhi Rad, S. Bagheri Novir, S. Mohseni, N. Ramezani Cherati, and A. Mirabi (2017). Heteroat. Chem. 28, 21396.Google Scholar
  37. 37.
    A. S. Rad (2018). J. Theoret. Comput. Chem. 17, 1850013.Google Scholar
  38. 38.
    Y. Zhao and D. Truhlar (2008). Theor. Chem. Acc. 120, 215.Google Scholar
  39. 39.
    Y. Zhao and D. G. Truhlar (2008). Acc. Chem. Res. 41, 157.Google Scholar
  40. 40.
    N. M. O’Boyle, A. L. Tenderholt, and K. M. Langner (2008). J. Comput. Chem. 29, 839.Google Scholar
  41. 41.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian 09, in (Gaussian Inc, Wallingford, 2009).Google Scholar
  42. 42.
    J. Beheshtian, Z. Bagheri, M. Kamfiroozi, and A. Ahmadi (2012). J. Mol. Model. 18, 2653.Google Scholar
  43. 43.
    E. Shakerzadeh, N. Barazesh, and S. Z. Talebi (2014). Superlattices Microstruct. 76, 264.Google Scholar
  44. 44.
    J. Li, T. He, and G. Yang (2012). Nanoscale 4, 1665.Google Scholar
  45. 45.
    J. Beheshtian, Z. Bagheri, M. Kamfiroozi, and A. Ahmadi (2011). Microelectron. J. 42, 1400.Google Scholar
  46. 46.
    S. Yourdkhani, T. Korona, and N. L. Hadipour (2015). J. Phys. Chem. A 119, 6446.Google Scholar
  47. 47.
    A. S. Rad, A. Mirabi, M. Peyravi, and M. Mirzaei (2017). Can. J. Phys. 95, 958.Google Scholar
  48. 48.
    T. V. Regemorter, M. Guillaume, G. Sini, J. S. Sears, V. Geskin, J.-L. Bredas, D. Beljonne, and J. Cornil (2012). Theor. Chem. Acc. 131, 1.Google Scholar
  49. 49.
    L. Turi and J. J. Dannenberg (1993). J. Phys. Chem. 97, 2488.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
  2. 2.Faculty of PharmacyBaqiyatallah University of Medical SciencesTehranIran
  3. 3.Department of Chemical Engineering, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran
  4. 4.Young Researchers and Elite Club, Arak BranchIslamic Azad UniversityArakIran
  5. 5.Institute of Chemical Technology and Engineering, Faculty of Chemical TechnologyPoznan University of TechnologyPoznanPoland
  6. 6.IESEM, TU BergakademieFreibergGermany

Personalised recommendations