Larvicidal Activity of Silver Nanoparticles Synthesized by Pseudomonas fluorescens YPS3 Isolated from the Eastern Ghats of India
- 47 Downloads
Abstract
Microbial nanoparticles synthesis is a greener approach by which it interconnects the nanotechnology and microbial biotechnology. The present study focussed on the synthesis of AgNP using P. fluorescens YPS3 as a mediated and larvicidal activity of AgNP against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus mosquito. P. fluorescens-YPS3 mediated AgNPs were characterized by UV–visible spectrophotometer, FT-IR, XRD, FE-SEM, EDX and HR-TEM analysis. The nature of the nanoparticles were confirmed by EDaX and they were polydispersed and spherical in nature with the average size of 26.67 ± 3 nm. The larvicidal activity of the AgNP revealed prominent toxicity on the tested mosquito larvae. AgNPs showed the LC50 value as 80.658 μg/ml, 94.225 μg/ml, and 113.238 μg/ml A. aegypti, A. stephensi and C. quinquefasciatus respectively. P. fluorescens—YPS3 synthesized nanoparticles found to have prominent bioactivity on mosquito larvae and thus can be used as biocontrol agent to control mosquito population.
Keywords
Silver nanoparticles Larvicidal activity Biocontrol agent Toxicity Pseudomonas sp. BiopesticideNotes
Acknowledgements
The author P.S thanks the National Post Doctoral Fellowship (NPDF) (PDF/2016/003905) Science and Engineering Research Board, Department of Science and Technology (DST-SERB) Government of India for the financial assistance. K.D thanks the Council of Scientific and Industrial Research (CSIR), Government of India, for providing the financial assistance through the Senior Research Fellowship (SRF).
References
- 1.World Health Organization, Dengue transmission research in WHO Bulletin (cited onjune 25) (2010). http://whqlibdoc.who.int/hq/2005/WHO-CDS-WHOPES-GCDPP-2005.13.pdf.
- 2.G. Benelli and M. F. Duggan (2018). Acta Trop. 182, 80.CrossRefGoogle Scholar
- 3.G. Benelli and H. Mehlhorn (2016). Parasitol. Res. 115, 1747.CrossRefGoogle Scholar
- 4.World Health Organization, Malaria (2013). http://www.who.int/mediacentre/factsheets/fs094/en/index.html.
- 5.P. Vivekanandhan, S. Deepa, E. Kweka, and Shivakumar (2018). J. Clust. Sci. 29, 1139. https://doi.org/10.1007/s10876-018-1423-1.CrossRefGoogle Scholar
- 6.X. Yang, Q. Li, H. Wang, J. Huang, L. Lin, W. Wang, D. Sun, Y. Su, J. B. Opiyo, L. Hong, and Y. Wang (2010). J Nanoparticle Res. 12, 1589.CrossRefGoogle Scholar
- 7.L. Jia, Q. Zhang, Q. Li, and H. Song (2008). Nanotechnology 20, 385.Google Scholar
- 8.R. K. Petla, S. Vivekanandhan, M. Misra, A. K. Mohanty, and N. Satyanarayana (2012). J. Biomater. Nanobiotechnol. 3, 14.CrossRefGoogle Scholar
- 9.S. Gurunathan, E. Kim, J. W. Han, J. H. Park, and J. H. Kim (2015). Molecules 20, 22476.CrossRefGoogle Scholar
- 10.G. Rajakumar, A. A. Rahuman, I. Chung, A. V. Kirthi, S. Marimuthu, and K. Anbarasan (2015). Parasitol. Res. 114, 1397.CrossRefGoogle Scholar
- 11.M. N. Nadagouda and R. S. Varma (2008). Green Chem. 10, 859.CrossRefGoogle Scholar
- 12.M. R. Shaik, Z. J. Q. Ali, M. Khan, M. Kuniyil, M. E. Assal, H. Z. Alkhathlan, A. A. Warthan, M. R. H. Siddiqui, M. Khan, S. Farooq, and S. F. Adil (2017). Molecules 22, 165.CrossRefGoogle Scholar
- 13.P. R. Jayaseelan, S. R. R. Gandhi, T. Y. Rajasree, R. Suman, and R. R. Mary (2018). Environ. Sci. Pollut. Res. 25, 324.CrossRefGoogle Scholar
- 14.N. Seyedi, K. Saidi, and H. Sheibani (2018). Catal. Lett. 148, 277.CrossRefGoogle Scholar
- 15.S. Kumari, M. Venkatesham, D. Ayodhya, and G. Veerabhadram (2014). Appl. Nanosci. 5, 315.CrossRefGoogle Scholar
- 16.P. Sivasankar, P. Seedevi, S. Poongodi, M. Sivakumar, T. Murugan, L. Sivakumar, and T. Balasubramanian (2018). Carbohyd. Polym. 181, 752.CrossRefGoogle Scholar
- 17.S. Marimuthu, A.A. Rahuman, A.V. Kirthi, T. Santhoshkumar, C. Jayaseelan, G. Rajakumar (2013). Parasitol Res. https://doi.org/10.1007/s00436-013-3601-2.
- 18.A. N. Banu, C. Balasubramanian, and P. V. Moorthi (2014). Parasitol. Res. 113, 311.CrossRefGoogle Scholar
- 19.P. Vivekanandhan, R. Venkatesan, G. Ramkumar, S. Karthi, S. Senthil-Nathan, and M. S. Shivakumar (2018). Int. J. Environ. Res. Public Health 15, 388.CrossRefGoogle Scholar
- 20.K. Bhakyaraj, S. Kumaraguru, K. Gopinath, V. Sabitha, P. R. Kaleeswarran, V. Karthika, A. Sudha, U. Muthukumaran, K. Jayakumar, S. Mohan, and A. Arumugam (2018). J. Clust. Sci. 28, 463.CrossRefGoogle Scholar
- 21.P. R. Jayaseelan, S. R. R. Gandhi, T. Y. Rajasree, R. Suman, and R. R. Mary (2018). Environ. Sci. Pollut. Res. 25, 324.CrossRefGoogle Scholar
- 22.S. Kumar, G. Stecher, and K. Tamura (2016). Mol. Biol. Evol. 33, 1870.CrossRefGoogle Scholar
- 23.J.G. Cappuccino and N. Sherman (1996). Microbiology: a laboratory manual.Google Scholar
- 24.K. Durairaj, P. Velmurugan, J. H. Park, W. S. Chang, Y. J. Park, P. Senthilkumar, K. M. Choi, J. H. Lee, and B. T. Oh (2018). Microbiol. Res. 206, 43.CrossRefGoogle Scholar
- 25.P. Vivekanandhan, S. Karthi, M. S. Shivakumar, and G. Benelli (2018). J. Path. Glob. Health. https://doi.org/10.1080/20477724.2018.1438228.
- 26.World Health Organization, Guidelines for laboratory and field testing of mosquito larvicides WHO/CDS/WHOPES/GCDPP/13 (2005).Google Scholar
- 27.N. Soni and S. Prakash (2014). Ann. Microbiol. 64, 1099.CrossRefGoogle Scholar
- 28.N. Soni and S. Prakash (2013). Adv. Nanopart. 2, 125.CrossRefGoogle Scholar
- 29.M. Govindarajan and G. Benelli (2017). J. Clust. Sci. 28, 15.CrossRefGoogle Scholar
- 30.M. Skladanowski, M. Wypij, D. Laskowski, P. Golinska, H. Dahm, and M. Rai (2017). J. Clust. Sci. 28, 59.CrossRefGoogle Scholar
- 31.G. Benelli (2018). Environ. Sci. Pollut. Res. 25, 12329.CrossRefGoogle Scholar
- 32.P. Sowndarya, G. Ramkumar, and M. S. Shivakumar Artif. Cells Nanomed. Biotechnol., 2016. https://doi.org/10.1080/21691401.2016.1252383.Google Scholar
- 33.B. Banumathi, B. Vaseeharan, P. Rajasekar, N. M. Prabhu, P. Ramasamy, K. Murugan, A. Canale, and G. Benelli (2017). Vet. Parasitol. 244, 102.CrossRefGoogle Scholar
- 34.G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1.CrossRefGoogle Scholar
- 35.M. Govindarajan, P. Vijayan, S. Kadaikunnan, N. S. Alharbi, and G. Benelli (2016). J. Photochem. Photobiol. B Biol. 162, 646.CrossRefGoogle Scholar
- 36.Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim (2000). J. Biomed. Mater. Res. 15, 662.CrossRefGoogle Scholar
- 37.R. B. Salunkhe, S. V. Patil, C. D. Patil, and B. K. Salunke (2011). Parasitol. Res. 109, 823.CrossRefGoogle Scholar
- 38.S. Silambarasan and A. Jayanthi (2013). Res. J. Biotech. 8, 71.Google Scholar
- 39.S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry (2004). Nat. Mater. 3, 482. https://doi.org/10.1038/nmat1152.CrossRefGoogle Scholar
- 40.C. Malarkodi, S. Rajeshkumar, K. Paulkumar, G. Gnanajobitha, M. Vanaja, and G. Annadurai (2013). Nanosci. Nanotechnol. Int.J 3, 26.Google Scholar
- 41.S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry (2004). Nat. Mater. 3, 482. https://doi.org/10.1038/nmat1152.CrossRefGoogle Scholar
- 42.D. Amerasan, T. Nataraj, K. Murugan, C. Panneerselvam, P. Madhiyazhagan, M. Nicoletti, and G. Benelli (2016). J. Pest. Sci. 89, 249.CrossRefGoogle Scholar
- 43.M. G. Babu and P. Gunasekaran (2009). Collids Surf. B. Biointerfaces 74, 191.CrossRefGoogle Scholar
- 44.M. R. Shaik, Z. J. Q. Ali, M. Khan, M. Kuniyil, M. E. Assal, H. Z. Alkhathlan, A. A. Warthan, M. R. H. Siddiqui, M. Khan, S. Farooq, and S. F. Adil (2017). Molecules 22, 165.CrossRefGoogle Scholar
- 45.G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci. 28, 3.CrossRefGoogle Scholar