A [Cu3] Cluster-Based Chain Featuring Linkages of Acylhydrazone N–N Single Bonds and Cl− Ions: Synthesis, Structure and Magnetic Properties
- 43 Downloads
Abstract
A Cu coordiantion polymer, namely, [Cu3(ovph)(Py)2Cl2] (1) [H4ovph = N,N′-bis(o-vanillidene)pyridine-2,6-dicarbohydrazide]; Py = Pyridine], was synthesized by solvothermal reaction of copper acetate and diacylhydrazone ligand H4ovhp. It was characterized by element analysis, FT-IR, thermogravimetric analysis, PXRD and single crystal X-ray diffraction. Structural analysis indicated that the N–N bonds of its ovph4− ligands bridge the Cu2+ ions to form quasi-linear [Cu3] cluster-based units, which were further linked together by in situ generated µ-Cl−, giving rise to a rare Cu chain structure containing two kinds of magnetic exchange pathways. Variable temperature magnetic measurements revealed that both N–N and Cl− bridges convey antiferromagnetic couplings, with the best fitting JN–N = − 99.95 cm−1, JCl = − 5.70 cm−1, zj = − 1.17 cm−1 and g = 2.00.
Keywords
Cu coordination polymer Diacylhydrazone Cl− bridges Magnetic interactionsNotes
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (Nos. 51572050 and 21771043) and the Guangxi Natural Science Foundation (Nos. 2018GXNSFAA138123 and 2015GXNSFDA139007).
References
- 1.G. M. Espallargas and E. Coronado (2018). Chem. Soc. Rev. 47, 533.CrossRefGoogle Scholar
- 2.W. X. Zhang, R. Ishikawa, B. Breedlove, and M. Yamashita (2013). RSC Adv. 3, 3772.CrossRefGoogle Scholar
- 3.X. Y. Liu, P. P. Cen, H. Li, H. S. Ke, S. Zhang, Q. Wei, G. Xie, S. P. Chen, and S. L. Gao (2014). Inorg. Chem. 53, 8088.CrossRefGoogle Scholar
- 4.J. Liu, Y. L. Qin, M. Qu, R. Clérac, and X. M. Zhang (2013). Dalton Trans. 42, 11571.CrossRefGoogle Scholar
- 5.M. V. Fedin, S. L. Veber, K. Y. Maryunina, G. V. Romanenko, E. A. Suturina, N. P. Gritsan, R. Z. Sagdeev, V. I. Ovcharenko, and E. G. Bagryanskaya (2010). J. Am. Chem. Soc. 132, 13886.CrossRefGoogle Scholar
- 6.C. K. Terajima, M. Ishii, T. Saito, C. Kanadani, T. Harada, and R. Kuroda (2012). Inorg. Chem. 51, 7502.CrossRefGoogle Scholar
- 7.R. T. Butcher, J. J. Novoa, J. R. Arin, A. W. Sandvik, M. M. Turnbull, C. P. Landee, B. M. Wells, and F. F. Awwadi (2009). Chem. Commun. 1359.Google Scholar
- 8.S. H. Lapidus, J. L. Manson, J. J. Liu, M. J. Smith, P. Goddard, J. Bendix, C. V. Topping, J. Singleton, C. Dunmars, J. F. Mitchella, and J. A. Schlueter (2013). Chem. Commun. 49, 3558.CrossRefGoogle Scholar
- 9.X. Y. Zhang, B. Li, and J. P. Zhang (2016). Inorg. Chem. 55, 3378.CrossRefGoogle Scholar
- 10.H. S. Scott, A. Nafady, J. D. Cashion, A. M. Bond, B. Moubaraki, K. S. Murray, and S. M. Neville (2013). Dalton Trans. 42, 10326.CrossRefGoogle Scholar
- 11.T. Hamaguchi, T. Nagata, S. Hayami, S. Kawata, and I. Andoa (2017). Dalton Trans. 46, 6196.CrossRefGoogle Scholar
- 12.A. Lanza, C. Fiolka, M. Fisch, N. Casati, M. Skoulatos, C. Rüegg, K. W. Krämer, and P. Macchi (2014). Chem. Commun. 50, 14504.CrossRefGoogle Scholar
- 13.K. Wang, Z. L. Chen, H. H. Zou, S. H. Zhang, Y. Li, X. Q. Zhang, W. Y. Sun, and F. P. Liang (2018). Dalton Trans. 47, 2337.CrossRefGoogle Scholar
- 14.K. Wang, Z. L. Chen, H. H. Zou, K. Hu, H. Y. Li, Z. Zhang, W. Y. Sun, and F. P. Liang (2016). Chem. Commun. 52, 8297.CrossRefGoogle Scholar
- 15.Z. L. Chen, Y. L. Shen, L. L. Li, H. H. Zou, X. X. Fu, Z. Y. Liu, K. Wang, and F. P. Liang (2017). Dalton Trans. 46, 15032.CrossRefGoogle Scholar
- 16.D. Q. Wu, D. Shao, X. Q. Wei, F. X. Shen, L. Shi, Y. Q. Zhang, and X. Y. Wang (2017). Dalton Trans. 46, 12884.CrossRefGoogle Scholar
- 17.G. M. Sheldrick SHELX-2014: Programs for Crystal Structure Analysis (University of Göttingen, Göttingen, 2014).Google Scholar
- 18.G. M. Sheldrick (2015). Acta Crystallogr. C 71, 3.CrossRefGoogle Scholar
- 19.O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr. 42, 339.CrossRefGoogle Scholar
- 20.L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2015). Acta Crystallogr. A 71, 59.CrossRefGoogle Scholar
- 21.L. Lemus, G. Ferraudi, and A. G. Lappin (2013). Dalton Trans. 42, 8637.CrossRefGoogle Scholar
- 22.N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini, and K. S. Murray (2013). J. Comput. Chem. 34, 1164.CrossRefGoogle Scholar