Journal of Cluster Science

, Volume 30, Issue 1, pp 197–202 | Cite as

Synthesis, Structure and Magnetic Properties of a Series of Defective Dicubic Ln2Ni2 Clusters

  • Wen-Li Ou
  • Mei-Jiao Li
  • Hua-Hong ZouEmail author
  • Hai-Ling Wang
  • Fu-Pei LiangEmail author
Original Paper


The coupling reaction of 2-hydroxy-3-methoxybenzaldehyde with 3-amino-1,2-propanediol under solvothermal conditions gives Schiff-base ligand 3-[(2-hydroxy-3-methoxy)-phenylmethyleneamino]-1,2-propanediol (H3L). Further reaction of a polyhydroxy Schiff-base of H3L with Ln(NO3)3·6H2O and Ni(NO3)2·6H2O in the presence of triethylamine as the base afforded three heterdimetallic clusters with defective dicubic topology, namely, [Ln2Ni2(L)23-OMe)2(CH3CN)2(NO3)4]·2CH3CN (Ln = Sm (1), Er (2), Gd (3)). They were characterized by single-crystal X-ray diffraction, thermal analysis, IR spectroscopy, elemental analyses, and magnetic susceptibility. The magnetic studies of 1 and 2 revealed the presence of dominant antiferromagnetic interactions, and compound 3 exhibited ferromagnetic coupling and a large magnetocaloric effect with 17.85 J kg−1 K−1 at 2 K for ΔH = 5 T.


Crystal structure Defective dicubic Magnetic properties Magnetocaloric effect 



This work was supported by the National Natural Science Foundation of China (Nos. 21601038 and 51572050), Guangxi Natural Science Foundation (Nos. 2015GXNSFDA139007 and 2016GXNSFAA380085), Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials (EMFM20162107).

Supplementary material

10876_2018_1476_MOESM1_ESM.docx (296 kb)
Supplementary material 1 (DOCX 296 kb)


  1. 1.
    S. Osa, T. Kido, N. Matsumoto, N. Re, A. Pochaba, and J. Mrozinski (2004). J. Am. Chem. Soc. 126, 420.CrossRefGoogle Scholar
  2. 2.
    C. Zaleski, M. Pochaba, E. C. Depperman, J. W. Kampf, M. L. Kirk, and V. L. Pecoraro (2004). Angew. Chem. Int. Ed. 43, 3912; Angew. Chem. 116, 4002.Google Scholar
  3. 3.
    A. Mishra, W. Wernsdorfer, K. A. Abboud, and G. Christou (2004). J. Am. Chem. Soc. 126, 15648.CrossRefGoogle Scholar
  4. 4.
    J. L. Liu, W. Q. Lin, Y. C. Chen, J. D. Leng, F. S. Guo, and M. L. Tong (2012). Inorg. Chem. 52, 457.CrossRefGoogle Scholar
  5. 5.
    H. L. C. Feltham, R. Clérac, L. Ungur, L. F. Chibotaru, A. K. Powell, and S. Brooker (2013). Inorg. Chem. 52, 3236.CrossRefGoogle Scholar
  6. 6.
    M. Andruh, J. P. Costes, C. Diaz, and S. Gao (2009). Inorg. Chem. 48, 3342.CrossRefGoogle Scholar
  7. 7.
    R. Sessoli and A. K. Powell (2009). Coord. Chem. Rev. 253, 2328.CrossRefGoogle Scholar
  8. 8.
    L. Sorace, C. Benelli, and D. Gatteschi (2011). Chem. Soc. Rev. 40, 3092.CrossRefGoogle Scholar
  9. 9.
    H. L. C. Feltham and S. Brooker (2014). Coord. Chem. Rev. 276, 1.CrossRefGoogle Scholar
  10. 10.
    A. Bencini, C. Benelli, A. Caneschi, R. L. Carlin, A. Dei, and D. Gatteschi (1985). J. Am. Chem. Soc. 107, 8128.CrossRefGoogle Scholar
  11. 11.
    P. A. Vigato and S. Tamburini (2004). Coord. Chem. Rev. 248, 1717.CrossRefGoogle Scholar
  12. 12.
    M. Andruh (2015). Dalton Trans. 44, 16633.CrossRefGoogle Scholar
  13. 13.
    J. P. Costes, F. Dahan, A. Dupuis, and J. P. Laurent (1996). Inorg. Chem. 35, 2400.CrossRefGoogle Scholar
  14. 14.
    J. P. Costes, F. Dahan, A. Dupuis, and J. P. Laurent (1997). Inorg. Chem. 36, 3429.CrossRefGoogle Scholar
  15. 15.
    S. Zhang, J. Wang, H. Zhang, Y. Fan, and Y. Xiao (2017). Dalton Trans. 46, 410.CrossRefGoogle Scholar
  16. 16.
    C. Benelli and D. Gatteschi (2002). Chem. Rev. 102, 2369.CrossRefGoogle Scholar
  17. 17.
    J. Zhang, L. Xu, and W. Wong (2018). Coord. Chem. Rev. 355, 180.CrossRefGoogle Scholar
  18. 18.
    K. Liu, W. Shi, and P. Cheng (2015). Coord. Chem. Rev. 289–290, 74.CrossRefGoogle Scholar
  19. 19.
    J. W. Sharples and D. Collison (2014). Coord. Chem. Rev. 260, 1.CrossRefGoogle Scholar
  20. 20.
    A. Chakraborty, J. Goura, P. Kalita, A. Swain, G. Rajaraman, and V. Chandrasekhar (2018). Dalton Trans. 47, 8841.CrossRefGoogle Scholar
  21. 21.
    X. Fu, H. Wang, H. Zou, H. Quan, B. Li, and F. Liang (2017). J. Clust. Sci. 28, 3229.CrossRefGoogle Scholar
  22. 22.
    H. Quan, L. Sheng, H. Zou, Z. Liu, D. Liu, B. Li, M. Chen, and F. Liang (2018). J. Clust. Sci. 29, 75.CrossRefGoogle Scholar
  23. 23.
    L. Li, J. Zou, S. You, H. Cui, G. Zeng, and J. Cui (2017). Dalton Trans. 46, 16432.CrossRefGoogle Scholar
  24. 24.
    Q. Lin, J. Li, Y. Dong, G. Zhou, Y. Song, and Y. Xu (2017). Dalton Trans. 46, 9745.CrossRefGoogle Scholar
  25. 25.
    L. Jiang, B. Liu, H. Zhao, J. Tian, X. Liu, and S. Yan (2017). CrystEngComm 19, 1816.CrossRefGoogle Scholar
  26. 26.
    H. L. C. Feltham, S. Dhers, M. Rouzières, R. Clérac, A. K. Powell, and S. Brooker (2015). Inorg. Chem. Front. 2, 982.CrossRefGoogle Scholar
  27. 27.
    X. Y. Zheng, J. B. Peng, X. J. Kong, L. S. Long, and L. S. Zheng (2016). Inorg. Chem. Front. 3, 320.CrossRefGoogle Scholar
  28. 28.
    H. Zou, L. Sheng, F. Liang, Z. Chen, and Y. Zhang (2015). Dalton Trans. 44, 18544.CrossRefGoogle Scholar
  29. 29.
    G. Sheldrick (2015). Acta Crystallogr. Sect. C Struct. Chem. 71, 3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and PharmacyGuangxi Normal UniversityGuilinPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and BioengineeringGuilin University of TechnologyGuilinPeople’s Republic of China

Personalised recommendations