Advertisement

Journal of Cluster Science

, Volume 30, Issue 1, pp 181–196 | Cite as

Fungicidal Efficiency of Silver and Copper Nanoparticles Produced by Pseudomonas fluorescens ATCC 17397 Against Four Aspergillus Species: A Molecular Study

  • Eman Zakaria GomaaEmail author
  • Manal Maher Housseiny
  • Ahmed Ali Abdel-Khalik Omran
Original Paper
  • 79 Downloads

Abstract

Nano-science has emerged as a powerful tool in the field of designing new antimicrobial substances. In the present study, a green and eco-friendly method for synthesizing silver and copper nanoparticles using Pseudomonas fluorescens was employed. The biosynthesis of metals nanoparticles was firstly identified by the color change of the extracellular culture filtrate and confirmed with the help of the study of UV–Vis spectroscopy. The synthesized nanoparticles have further been characterized by transmission electron microscopy, energy dispersive X-ray and fourier transformation infrared studies. The antifungal activity of AgNPs and CuNPs was evaluated in vitro and the results showed that AgNPs had the greater effect as compared to CuNPs and Aspergillus species were the most sensitive strains. Protein electrophoresis results of Aspergillus species demonstrated the change in the protein profiles of the four fungal species against their controls after treatment with AgNPs and CuNPs. In addition, ISSR PCR analysis using five primers (HB-08, 44B, HB-10, HB-15 and 98A) indicated the appearance and disappearance of DNA polymorphic bands and induction of a high genetic variability in response to the two treatments. The results confirmed that metal nanoparticles are a promising approach to control fungal pathogens and eliminate their toxicity; therefore their applications should gained significant importance.

Keywords

Silver nanoparticles Copper Nanoparticles Characterization Antifungal activity Protein electrophoresis ISSR PCR 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    P. Kanhed, S. Birla, S. Gaikwad, A. Gade, A. B. Seabra, O. Rubilar, N. Duran, and M. Rai (2014). Mater. Lett. 115, 13.CrossRefGoogle Scholar
  2. 2.
    J. Jiravova, K. B. Tomankova, M. Harvanova, L. Malina, J. Malohlava, L. Luhova, A. Panacek, B. Manisova, and H. Kolarova (2016). Food Chem. Toxicol. 96, 50.CrossRefGoogle Scholar
  3. 3.
    G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1.CrossRefGoogle Scholar
  4. 4.
    N. Duran, G. Nakazato, and A. B. Seabra (2016). Appl. Microbiol. Biotechnol. 100, 6555.CrossRefGoogle Scholar
  5. 5.
    S. N. Sinha and D. Paul (2014). Int. J. Green Herbal. Chem. 3, 401.Google Scholar
  6. 6.
    G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci. 28, 3.CrossRefGoogle Scholar
  7. 7.
    M. Choudhary, R. Manan, M. A. Mirza, H. R. Khan, S. Qayyum, and Z. Ahmed (2018). Int. J. Mater. Sci. Eng. 4, 1.Google Scholar
  8. 8.
    S. Ranjan, N. Dasgupta, A. R. Chakraborty, S. M. Samuel, C. Ramalingam, R. Shanker, and R. A. Kuma (2014). J. Nanopart. Res. 16, 2464.CrossRefGoogle Scholar
  9. 9.
    R. Rajkumar, M. S. Shivakumar, S. S. Nathan, and K. Selvam (2018). J. Clust. Sci. 29, 1243.CrossRefGoogle Scholar
  10. 10.
    G. Caroling, M. N. Priyadharshini, E. Vinodhini, A. M. Ranjitham, and P. Shanthi (2015). Int. J. Pharm. Bio Sci. 5, 25.Google Scholar
  11. 11.
    P. Yugandhar, T. Vasavi, Y. J. Rao, P. M. Devi, G. Narasimha, and N. Savithramma (2018). J. Clust. Sci. 29, 743.CrossRefGoogle Scholar
  12. 12.
    J. Musarrat, S. Dwivedi, B. R. Singh, A. A. Al-Khedhairy, and A. Azam (2010). Bioresour. Technol. 101, 8772.CrossRefGoogle Scholar
  13. 13.
    M. Cheesbrough District Laboratory Practice in Tropical Countries, Part 2, 2nd ed (Cambridge University Press, Fakenham, 2000).Google Scholar
  14. 14.
    O. H. Lowery, N. J. Resenbrough, A. L. Farr, and R. J. Randall (1951). J. Biol. Chem. 193, 265.Google Scholar
  15. 15.
    K. Burton (1956). Biochem. J. 62, 315.CrossRefGoogle Scholar
  16. 16.
    U. K. Laemmli (1970). Nature 227, 680.CrossRefGoogle Scholar
  17. 17.
    F. W. Studier (1973). J. Mol. Biol. 79, 237.CrossRefGoogle Scholar
  18. 18.
    J. A. H. Van Burik, R. W. Schreckhise, T. C. White, R. A. Bowden, and D. Myerson (1998). Med. Mycol. 36, 299.CrossRefGoogle Scholar
  19. 19.
    E. Zietkiewicz, A. Rafalski, and D. Labuda (1994). Genomics 20, 176.CrossRefGoogle Scholar
  20. 20.
    F.J. Rohlf (2008) NTSYS. Pc. Version 2.20U (Exeter Software, Setauket).Google Scholar
  21. 21.
    D. Vijayaraj, J. Anarkali, K. Rajathi, and S. Sridhar (2012). Int. J. Nanomater. Biostruct. 2, 11.Google Scholar
  22. 22.
    B. K. Ravindra and A. H. Rajasab (2014). Int. J. Pharm. Pharm. Sci. 6, 372.Google Scholar
  23. 23.
    V. C. Verma, R. N. Kharwar, and A. C. Gange (2010). Nanomedicine 5, 33.CrossRefGoogle Scholar
  24. 24.
    R. Subbaiya and M. Selvam (2015). Res. J. Pharm. Biol. Chem. Sci. 6, 1183.Google Scholar
  25. 25.
    T. Theivasanthi and M. Alagar (2013). Nano. Biomed. Eng. 5, 11.Google Scholar
  26. 26.
    A. K. Deenadayalan, V. Palanichamy, and M. R. Selvaraj (2014). Spectrochim. Acta Part A 127, 168.CrossRefGoogle Scholar
  27. 27.
    S. Khushboo, P. Manju, K. Sangeeta, P. Y. Uma, and C. Jaya (2014). J. Nanotechnol. 12, 40.Google Scholar
  28. 28.
    T. Theivasanthi and M. Alagar (2011). Int. J. Phys. Sci. 6, 3726.Google Scholar
  29. 29.
    F. Calaza, F. Gao, Z. Li, and W. T. Tyose (2007). Surf. Sci. 601, 714.CrossRefGoogle Scholar
  30. 30.
    M. Saravanan (2010). World Acad. Sci. Eng. Technol. 68, 505.Google Scholar
  31. 31.
    M. Saravanan, T. Amelash, L. Negash, A. Gebreyesus, A. Selvaraj, V. Rayar, and K. Dheekonda (2013). Int. J. Res. Pharm. Biomed. Sci. 4, 822.Google Scholar
  32. 32.
    B. Bahrami-Teimooria, Y. Nikparastb, M. Hojatianfarc, M. Akhlaghia, R. Ghorbanib, and H. R. Pourianfara (2017). J. Exp. Nanosci. 12, 129.CrossRefGoogle Scholar
  33. 33.
    P. Ruiz-Romeroa, B. Valdez-Salasb, D. Gonzalez-Mendozaa, and V. Mendez-Trujillob (2018). Mycobiology 46, 47.CrossRefGoogle Scholar
  34. 34.
    M. S. Rubina, A. Y. Vasilkov, A. V. Naumkin, E. V. Shtykova, S. S. Abramchuk, M. A. Alghuthaymi, and K. A. Abd-Elsalam (2017). J. Nanostruct. Chem. 7, 249.CrossRefGoogle Scholar
  35. 35.
    G. Gonzalez, M. J. Hinojo, R. Mateo, A. Medina, and M. Jimenez (2005). Int. J. Food Microbiol. 15, 1.CrossRefGoogle Scholar
  36. 36.
    J. Pulit, M. Banach, R. Szczglowska, and M. Bryk (2013). Acta Biochim. Pol. 60, 795.Google Scholar
  37. 37.
    D. J. Saraniya and B. B. Valentin (2014). Biosci. Biotechnol. Res Asia 11, 235.CrossRefGoogle Scholar
  38. 38.
    M. A. Alghuthaymi, H. Almoammar, M. Rai, E. Saidgaliev, and K. A. Abd-Elsalam (2015). Biotechnol. Biotechnol. Equip. 29, 221.CrossRefGoogle Scholar
  39. 39.
    B. Reidy, A. Haase, A. Luch, K. A. Dawson, and I. Lynch (2013). Materials 6, 2295.CrossRefGoogle Scholar
  40. 40.
    V. Saharan, G. Sharma, M. Yadav, M. K. Choudhary, S. S. Sharma, A. Pal, R. Raliya, and P. Biswas (2015). Int. J. Biol. Macromol. 75, 346.CrossRefGoogle Scholar
  41. 41.
    K. B. Narayanan and H. H. Park (2014). Eur. J. Plant. Pathol. 140, 185.CrossRefGoogle Scholar
  42. 42.
    A. Nalwade and A. Jadhav (2013). Arch. Appl. Sci. Res. 5, 45.Google Scholar
  43. 43.
    M. Rai, S. D. Deshmukh, A. P. Ingle, and A. K. Gade (2012). J. Appl. Microbiol. 112, 841.CrossRefGoogle Scholar
  44. 44.
    A. I. El-Batal, F. M. Mosallam, and G. S. El-Sayyad (2018). J. Clust. Sci. 29, 1003.CrossRefGoogle Scholar
  45. 45.
    K. S. Siddiqi, A. Husen, and R. A. K. Rao (2018). J. Nanobiotechnol. 16, 14.CrossRefGoogle Scholar
  46. 46.
    C. G. Athanassiou, N. G. Kavallieraros, G. Benelli, D. Losic, P. U. Rani, and N. Desneux (2018). J. Pest Sci. 91, 1.CrossRefGoogle Scholar
  47. 47.
    N. A. Al-Hazmi and E. A. Kamel (2012). Afr. J. Microbiol. Res. 6, 3492.Google Scholar
  48. 48.
    S. S. Sobieh, Z. M. H. Kheiralla, A. A. Rushdy, and N. A. N. Yakob (2016). Caryologia Int. J. Cytol. Cytosyst. Cytogen. 69, 147.Google Scholar
  49. 49.
    P. P. Batista, J. F. Santos, N. T. Oliveira, A. P. Pires, C. M. Motta, and E. A. Luna-Alves Lima (2008). Gen. Mol. Res. 7, 706.CrossRefGoogle Scholar
  50. 50.
    C. S. Zhang, F. G. Xing, J. N. Selvaraj, Q. L. Yang, L. Zhou, Y. J. Zhao, and Y. Liu (2013). Biochem. Syst. Ecol. 50, 147.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Eman Zakaria Gomaa
    • 1
    Email author
  • Manal Maher Housseiny
    • 1
  • Ahmed Ali Abdel-Khalik Omran
    • 1
  1. 1.Department of Biological and Geological Sciences, Faculty of EducationAin Shams UniversityCairoEgypt

Personalised recommendations