Journal of Cluster Science

, Volume 30, Issue 1, pp 171–180 | Cite as

Anti-larvicidal Activity of Silver Nanoparticles Synthesized from Sargassum polycystum Against Mosquito Vectors

  • S. VinothEmail author
  • S. Gowri Shankar
  • P. Gurusaravanan
  • B. Janani
  • J. Karthika Devi
Original Paper


Mosquitoes act as vectors of pathogens and parasites that cause dreadful diseases (malaria, dengue, chikungunya, yellow fever, lymphatic filariasis and Japanese encephalitis) in human beings. Synthetic chemical insecticides cause undesirable consequences in human beings and thus affect the ecosystem. Marine source based nanosynthesis has been reported as cheap and cost effective alternative for mosquito management. We have developed an ecofriendly protocol for the synthesis of nanoparticles using seaweed extract. The synthesized nanoparticles were characterized using UV–visible spectroscopy, FTIR, SEM, EDAX and XRD. We found that the extract treated at 60 °C was found to be more effective in synthesizing the nanoparticles. SEM analysis revealed that the Sp-AgNPs were predominantly cubical in shape and size ranges from 20 to 88 nm. The three strong diffraction peaks were observed by XRD analysis and it confirmed the crystalline nature of silver nanoparticles. Synthesized Sp-AgNPs were tested against four mosquitoes larvaes (An. stephensi, Ae. aegypti, Cx. quinquefasciatus and Cx. tritaeniorhynchus) and their mortality was examined. We found that Ae. aegypti has shown higher mortality rate of about 80% and 90% after 48 h and 72 h of treatment with Sp-AgNPs and moderately toxic against Cx. quinquefasciatus larvae and it has shown maximum of 80% mortality rate at 72 h of treatment. The mosquito larvae An. stephensi and Cx. tritaeniorhynchus has shown less response compared to others tested. So we believe that, fabricated Sp-AgNPs will be the promising eco-friendly tool to control Ae. aegypti and Cx. quinquefasciatus vectors.


Silver nanoparticles Seaweed Sargassum polycystum Mosquito Larvicidal activity 



Authors are thankful to Annamalai University and ICMR institute, Madurai for the facility provided to perform SEM analysis and antilarvicidal activity.

Compliance with Ethical Standards

Conflict of interest

We declare that we have no conflict of interest.


  1. 1.
    H. Mehlhorn, K. A. Al-Rasheid, S. Al-Quraishy, and F. Abdel-Ghaffar (2012). Parasitol. Res. 110, 259–265.CrossRefGoogle Scholar
  2. 2.
    G. Benelli (2018). Saudi J. Biol. Sci. Scholar
  3. 3.
    R. M. S. T. Azarudeen, M. Govindarajan, A. Amsath, U. Muthukumaran, and G. Benelli (2017). J. Clust. Sci. 28, 179–203.CrossRefGoogle Scholar
  4. 4.
    A. Hajra, S. Dutta, and N. K. Mondal (2016). J. Parasit. Dis. 40, 1519–1527.CrossRefGoogle Scholar
  5. 5.
    C. Falade, O. Mokuolu, H. Okafor, A. Orogade, A. Falade, and O. Adedoyin (2007). Trop. Med. Int. Health 12, 1279–1287.CrossRefGoogle Scholar
  6. 6.
    N. L. Cui, S. Mharakurwa, D. Ndiaye, P. K. Rathod, and P. J. Rosenthal (2015). Am. J. Trop. Med. Hyg. 93, 57–68.CrossRefGoogle Scholar
  7. 7.
    R. G. Ridley (2002). Nat. 415, 686–693.CrossRefGoogle Scholar
  8. 8.
    S. Ravikumar, S. J. Inbaneson, P. Suganthi, R. Gokulakrishnan, and M. Venkatesan (2011). Parasitol. Res. 108, 1411–1416.CrossRefGoogle Scholar
  9. 9.
    M. Frederich, J. M. Dogné, L. Angenot, and P. DeMol (2002). Curr. Med. Chem. 9, 1435–1456.CrossRefGoogle Scholar
  10. 10.
    G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2016). J. Clust. Sci. Scholar
  11. 11.
    G. Benelli (2015). Parasitol. Res. 114, 2801–2805.CrossRefGoogle Scholar
  12. 12.
    H. Khater, N. Hendawy, M. Govindarajan, K. Murugan, and G. Benelli (2016). Parasitol. Res. 115, 3747–3758.CrossRefGoogle Scholar
  13. 13.
    R. Pavela (2016). Plant Prot. Sci. 52, 229–241.CrossRefGoogle Scholar
  14. 14.
    R. Pavela and G. Benelli (2016). Trends Plant Sci. 21, 1000–1007.CrossRefGoogle Scholar
  15. 15.
    P. C. Stevenson, M. B. Isman, and S. R. Belmain (2017). Ind. Crops Prod. 110, 2–9.CrossRefGoogle Scholar
  16. 16.
    G. Benelli and R. Pavela (2018). Acta Trop. 179, 47–54.CrossRefGoogle Scholar
  17. 17.
    A. B. B. Wilke, J. C. Beier, and G. Benelli (2018). Trends Parasitol. Scholar
  18. 18.
    G. Benelli (2016). Parasitol. Res. 115, 23–34.CrossRefGoogle Scholar
  19. 19.
    A. Thirumurugan, P. Aswitha, C. Kiruthika, S. Nagarajan, and A. N. Christy (2016). Mater Lett. 170, 175–178.CrossRefGoogle Scholar
  20. 20.
    N. Thangaraju, R. P. Venkatalakshmi, A. Chinnasamy, and P. Kannaiyan (2012). Nano Biomed. Eng. 4, 89–94.CrossRefGoogle Scholar
  21. 21.
    F. Namvar, M. Suhaila, S. Gasemi Fard, and J. Behravan (2012). Food Chem. 130, 376–382.CrossRefGoogle Scholar
  22. 22.
    M. N. Khan, J. S. Choi, M. C. Lee, E. Kim, T. J. Nam, H. Fujii, and Y. K. Hong (2008). Environ Bio. l29, 465–469.Google Scholar
  23. 23.
    G. R. M. Perez, S. M. A. Zavala, G. S. Perez, and G. C. Perez (1998). Phytomedicine 5, 55–75.CrossRefGoogle Scholar
  24. 24.
    T. Nishino, A. Fukuda, T. Nagumo, M. Fujihara, and E. Kaji (1999). Thromb. Res. 96, 37–49.CrossRefGoogle Scholar
  25. 25.
    K. Wada, K. Nakamura, Y. Tamai, M. Tsuji, Y. Sahashi, K. Watanabe, S. Ohtsuchi, K. Yamamoto, K. Ando, and C. Nagata (2011). J. Nutr. Scholar
  26. 26.
    R. Ahmad, W. L. Chu, Z. Ismail, H. L. Lee, and S. M. Phang (2004). Southeast Asian J. Trop. Med. Public Health 35, 79–87.Google Scholar
  27. 27.
    P. V. Oliveira, J. C. Ferreira, F. S. Jr, G. S. Moura, F. M. de Lima, P. E. Oliveira, L. M. Oliveira, A. M. Giulietti Conserva, and R. P. Lemos (2010). Parasitol. Res. 107, 403–407.CrossRefGoogle Scholar
  28. 28.
    K. Samidurai and A. Saravanakumar (2011). Parasitol. Res. 109, 1107–1112.CrossRefGoogle Scholar
  29. 29.
    A. Ghosh, N. Chowdhury, and G. Chandra (2012). Indian J. Med. Res. 135, 581–598.Google Scholar
  30. 30.
    K. X. Yu, I. Jantan, R. Ahmad, and C. L. Wong (2014). Parasitol Res. Scholar
  31. 31.
    R. Perumal, S. Sowmiya, S. Prasannakumar, P. Deepak Ravikumar, and G. Balasubramani (2018). Natural Product Res. 32, 1316–1319.CrossRefGoogle Scholar
  32. 32.
    K. Govindaraju, V. Kiruthiga, V. Ganesh Kumar, and G. Singaravelu (2009). J. Nanosci. Nanotechnol. 9, 5497–5501.CrossRefGoogle Scholar
  33. 33.
    S. Rajesh, D. Patric Raja, J. M. Rathi, and K. Sahayaraj (2012). J. Biopest. 5, 119–128.Google Scholar
  34. 34.
    K. Murugan, G. Benelli, S. Ayyappan, D. Dinesh, C. Panneerselvam, M. Nicoletti, J. Hwang, P. Mahesh Kumar, J. Subramaniam, and U. Suresh (2015). Parasitol. Res. Scholar
  35. 35.
    D. Dinesh, K. Murugan, P. Madhiyazhagan, C. Panneerselvam, M. Nicoletti, W. Jiang, G. Benelli, B. Chandramohan, and U. Suresh (2015). Parasitol. Res. 114, 1519–1529.CrossRefGoogle Scholar
  36. 36.
    U. Suresh, K. Murugan, G. Benelli, M. Nicoletti, D. R. Barnard, C. Panneerselvam, P. Mahesh Kumar, J. Subramaniam, D. Dinesh, and B. Chandramohan (2015). Parasitol. Res. Scholar
  37. 37.
    W. Abbott (1925). J. Econ. Entomol. 18, 265–267.CrossRefGoogle Scholar
  38. 38.
    K. Karunamoorthi (2011). Clin. Microbiol. Infect. 17, 1608–1616.CrossRefGoogle Scholar
  39. 39.
    J. Santoso, Y. Yumiko, and S. Takeshi (2004). Fish Sci. 70, 183–188.CrossRefGoogle Scholar
  40. 40.
    M. Govindarajan, H. F. Khater, C. Panneerselvam, and G. Benelli (2016). Res. Vet. Sci. 107, 95–101.CrossRefGoogle Scholar
  41. 41.
    M. Govindarajan, M. Rajeswary, K. Veerakumar, U. Muthukumaran, S. L. Hoti, H. F. Khater, and G. Benelli (2016). J. Photochem. Photobiol. B Biol. 161, 482–489.CrossRefGoogle Scholar
  42. 42.
    M. Teimouri, F. K. Nejad, F. Attar, A. A. Saboury, I. Kostova, G. Benelli, and F. Falahati (2018). J. Cleaner Prod. 184, 740–753.CrossRefGoogle Scholar
  43. 43.
    G. Rajakumar and A. A. Rahuman (2012). Res. Vet. Sci. 93, 303–309.CrossRefGoogle Scholar
  44. 44.
    M. Govindarajan and G. Benelli (2016). RSC Adv. 6, 59021–59029.CrossRefGoogle Scholar
  45. 45.
    A. T. Aziz, M. Ali Alshehri, C. Panneerselvam, K. Murugan, S. Trivedi, J. A. Mahyoub, M. M. Hassan, F. Maggi, S. Sut, S. Dall’Acqua, A. Canale, and G. Benelli (2018). J Photochem Photobiol B Biol 180, 225–234.CrossRefGoogle Scholar
  46. 46.
    S. A. Alyahya, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, B. Vaseeharan, R. Ishwarya, M. Yazhiniprabha, and G. Benelli (2018). J. Photochem. Photobiol. B Biol. 181, 70–79.CrossRefGoogle Scholar
  47. 47.
    P. K. Dhanalakshmi, R. Azeez, R. Rekha, S. Poonkodi, and T. Nallamuthu (2012). Phykos 42, 39–45.Google Scholar
  48. 48.
    P. Kumar, S. Senthamil Selvi, A. Lakshmi Prabha, K. Prem Kumar, R. S. Ganeshkumar, and M. Govindaraju (2012). Nano Biomed. Eng. 4, 12–16.Google Scholar
  49. 49.
    A. P. de Aragao, T. M. de Oliveira, P. V. Quelemes, M. L. G. Perfeito, M. C. Araujo, J. A. S. Santiago, V. S. Cardoso, P. Quaresma, J. R. S. de Almeida Leite, and D. A. da Silva (2016). Arab J. Chem. Scholar
  50. 50.
    K. Murugan, C. M. Samidoss, C. Panneerselvam, A. Higuchi, M. Roni, U. Suresh, B. Chandramohan, J. Subramaniam, P. Madhiyazhagan, D. Dinesh, R. Rajaganesh, A. A. Alarfaj, M. Nicoletti, S. Kumar, H. Wei, A. Canale, H. Mehlhorn, and G. Benelli (2015). Parasitol. Res. Scholar
  51. 51.
    S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry (2004). J. Colloid Interface Sci. 275, 496–502.CrossRefGoogle Scholar
  52. 52.
    G. Singaravelu, J. S. Arockiamary, V. Ganesh Kumar, and K. Govindaraju (2007). Colloids Surf. B Biointerf. 57, 97–101.CrossRefGoogle Scholar
  53. 53.
    P. Magudapatty, P. Gangopadhyayrans, B. K. Panigrahi, K. G. M. Nair, and S. Dhara (2001). Physica. B 299, 142–146.CrossRefGoogle Scholar
  54. 54.
    J. Kaviya, B. Santhanalakshmi, J. Muthumary Viswanathan, and K. Srinivasan (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 594–598.CrossRefGoogle Scholar
  55. 55.
    S. Anil Kumar, M. K. Abyaneh, S. W. Gosavi Sulabha, A. Ahmad, and M. I. Khan (2007). Nitrate reductase mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 29, 439–445.CrossRefGoogle Scholar
  56. 56.
    J. Suriya, S. Bharathi Raja, V. Sekar, and R. Rajasekaran (2012). Afr. J. Biotechnol. 11, 12192–12198.CrossRefGoogle Scholar
  57. 57.
    P. M. G. Nair and J. Choi (2011). Aquat. Toxicol. 101, 550–560.CrossRefGoogle Scholar
  58. 58.
    R. Foldbjerg, X. Jiang, T. Miclăus, C. Chunying, H. Autrup, and C. Beer (2015). Toxicol. Res. 4, 563–575.CrossRefGoogle Scholar
  59. 59.
    B. H. Mao, Z. Y. Chen, Y. J. Wang, and S. J. Yan (2018). Sci. Rep. 8, 2445.CrossRefGoogle Scholar
  60. 60.
    M. Rai, K. Kon, A. Ingle, N. Duran, S. Galdiero, and M. Galdiero (2014). Appl. Microb. Biotechnol. 98, 1951–1961.CrossRefGoogle Scholar
  61. 61.
    X. Jiang, T. Miclăuş, L. Wang, R. Foldbjerg, D. S. Sutherland, H. Autrup, C. Chen, and C. Beer (2015). Nanotoxicol. 9, 181–189.CrossRefGoogle Scholar
  62. 62.
    J. Subramaniam, K. Kovendan, P. Mahesh Kumar, K. Murugan, and W. Walton (2012). Saudi J. Biol. Sci. 19, 503–509.CrossRefGoogle Scholar
  63. 63.
    C. D. Patil, H. P. Borase, S. V. Patil, R. B. Salunkhe, and B. K. Salunke (2012). Parasitol. Res. 111, 555–562.CrossRefGoogle Scholar
  64. 64.
    C. D. Patil, S. V. Patil, H. P. Borase, B. K. Salunke, and R. B. Salunkhe (2012). Parasitol. Res. 110, 1815–1822.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Vinoth
    • 1
    Email author
  • S. Gowri Shankar
    • 2
  • P. Gurusaravanan
    • 3
  • B. Janani
    • 1
  • J. Karthika Devi
    • 1
  1. 1.Department of BiotechnologyAarupadai Veedu Institute of TechnologyChennaiIndia
  2. 2.Department of EntomologyVector Control Research CentreMaduraiIndia
  3. 3.Department of BotanyBharathiar UniversityCoimbatoreIndia

Personalised recommendations