Anti-larvicidal Activity of Silver Nanoparticles Synthesized from Sargassum polycystum Against Mosquito Vectors
- 66 Downloads
Abstract
Mosquitoes act as vectors of pathogens and parasites that cause dreadful diseases (malaria, dengue, chikungunya, yellow fever, lymphatic filariasis and Japanese encephalitis) in human beings. Synthetic chemical insecticides cause undesirable consequences in human beings and thus affect the ecosystem. Marine source based nanosynthesis has been reported as cheap and cost effective alternative for mosquito management. We have developed an ecofriendly protocol for the synthesis of nanoparticles using seaweed extract. The synthesized nanoparticles were characterized using UV–visible spectroscopy, FTIR, SEM, EDAX and XRD. We found that the extract treated at 60 °C was found to be more effective in synthesizing the nanoparticles. SEM analysis revealed that the Sp-AgNPs were predominantly cubical in shape and size ranges from 20 to 88 nm. The three strong diffraction peaks were observed by XRD analysis and it confirmed the crystalline nature of silver nanoparticles. Synthesized Sp-AgNPs were tested against four mosquitoes larvaes (An. stephensi, Ae. aegypti, Cx. quinquefasciatus and Cx. tritaeniorhynchus) and their mortality was examined. We found that Ae. aegypti has shown higher mortality rate of about 80% and 90% after 48 h and 72 h of treatment with Sp-AgNPs and moderately toxic against Cx. quinquefasciatus larvae and it has shown maximum of 80% mortality rate at 72 h of treatment. The mosquito larvae An. stephensi and Cx. tritaeniorhynchus has shown less response compared to others tested. So we believe that, fabricated Sp-AgNPs will be the promising eco-friendly tool to control Ae. aegypti and Cx. quinquefasciatus vectors.
Keywords
Silver nanoparticles Seaweed Sargassum polycystum Mosquito Larvicidal activityNotes
Acknowledgements
Authors are thankful to Annamalai University and ICMR institute, Madurai for the facility provided to perform SEM analysis and antilarvicidal activity.
Compliance with Ethical Standards
Conflict of interest
We declare that we have no conflict of interest.
References
- 1.H. Mehlhorn, K. A. Al-Rasheid, S. Al-Quraishy, and F. Abdel-Ghaffar (2012). Parasitol. Res. 110, 259–265.CrossRefGoogle Scholar
- 2.G. Benelli (2018). Saudi J. Biol. Sci. https://doi.org/10.1016/j.sjbs.2018.06.007.Google Scholar
- 3.R. M. S. T. Azarudeen, M. Govindarajan, A. Amsath, U. Muthukumaran, and G. Benelli (2017). J. Clust. Sci. 28, 179–203.CrossRefGoogle Scholar
- 4.A. Hajra, S. Dutta, and N. K. Mondal (2016). J. Parasit. Dis. 40, 1519–1527.CrossRefGoogle Scholar
- 5.C. Falade, O. Mokuolu, H. Okafor, A. Orogade, A. Falade, and O. Adedoyin (2007). Trop. Med. Int. Health 12, 1279–1287.CrossRefGoogle Scholar
- 6.N. L. Cui, S. Mharakurwa, D. Ndiaye, P. K. Rathod, and P. J. Rosenthal (2015). Am. J. Trop. Med. Hyg. 93, 57–68.CrossRefGoogle Scholar
- 7.R. G. Ridley (2002). Nat. 415, 686–693.CrossRefGoogle Scholar
- 8.S. Ravikumar, S. J. Inbaneson, P. Suganthi, R. Gokulakrishnan, and M. Venkatesan (2011). Parasitol. Res. 108, 1411–1416.CrossRefGoogle Scholar
- 9.M. Frederich, J. M. Dogné, L. Angenot, and P. DeMol (2002). Curr. Med. Chem. 9, 1435–1456.CrossRefGoogle Scholar
- 10.G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2016). J. Clust. Sci. https://doi.org/10.1007/s10876-016-1131-7.Google Scholar
- 11.G. Benelli (2015). Parasitol. Res. 114, 2801–2805.CrossRefGoogle Scholar
- 12.H. Khater, N. Hendawy, M. Govindarajan, K. Murugan, and G. Benelli (2016). Parasitol. Res. 115, 3747–3758.CrossRefGoogle Scholar
- 13.R. Pavela (2016). Plant Prot. Sci. 52, 229–241.CrossRefGoogle Scholar
- 14.R. Pavela and G. Benelli (2016). Trends Plant Sci. 21, 1000–1007.CrossRefGoogle Scholar
- 15.P. C. Stevenson, M. B. Isman, and S. R. Belmain (2017). Ind. Crops Prod. 110, 2–9.CrossRefGoogle Scholar
- 16.G. Benelli and R. Pavela (2018). Acta Trop. 179, 47–54.CrossRefGoogle Scholar
- 17.A. B. B. Wilke, J. C. Beier, and G. Benelli (2018). Trends Parasitol. https://doi.org/10.1016/j.pt.2018.02.003.Google Scholar
- 18.G. Benelli (2016). Parasitol. Res. 115, 23–34.CrossRefGoogle Scholar
- 19.A. Thirumurugan, P. Aswitha, C. Kiruthika, S. Nagarajan, and A. N. Christy (2016). Mater Lett. 170, 175–178.CrossRefGoogle Scholar
- 20.N. Thangaraju, R. P. Venkatalakshmi, A. Chinnasamy, and P. Kannaiyan (2012). Nano Biomed. Eng. 4, 89–94.CrossRefGoogle Scholar
- 21.F. Namvar, M. Suhaila, S. Gasemi Fard, and J. Behravan (2012). Food Chem. 130, 376–382.CrossRefGoogle Scholar
- 22.M. N. Khan, J. S. Choi, M. C. Lee, E. Kim, T. J. Nam, H. Fujii, and Y. K. Hong (2008). Environ Bio. l29, 465–469.Google Scholar
- 23.G. R. M. Perez, S. M. A. Zavala, G. S. Perez, and G. C. Perez (1998). Phytomedicine 5, 55–75.CrossRefGoogle Scholar
- 24.T. Nishino, A. Fukuda, T. Nagumo, M. Fujihara, and E. Kaji (1999). Thromb. Res. 96, 37–49.CrossRefGoogle Scholar
- 25.K. Wada, K. Nakamura, Y. Tamai, M. Tsuji, Y. Sahashi, K. Watanabe, S. Ohtsuchi, K. Yamamoto, K. Ando, and C. Nagata (2011). J. Nutr. https://doi.org/10.1186/1475-2891-10-83.Google Scholar
- 26.R. Ahmad, W. L. Chu, Z. Ismail, H. L. Lee, and S. M. Phang (2004). Southeast Asian J. Trop. Med. Public Health 35, 79–87.Google Scholar
- 27.P. V. Oliveira, J. C. Ferreira, F. S. Jr, G. S. Moura, F. M. de Lima, P. E. Oliveira, L. M. Oliveira, A. M. Giulietti Conserva, and R. P. Lemos (2010). Parasitol. Res. 107, 403–407.CrossRefGoogle Scholar
- 28.K. Samidurai and A. Saravanakumar (2011). Parasitol. Res. 109, 1107–1112.CrossRefGoogle Scholar
- 29.A. Ghosh, N. Chowdhury, and G. Chandra (2012). Indian J. Med. Res. 135, 581–598.Google Scholar
- 30.K. X. Yu, I. Jantan, R. Ahmad, and C. L. Wong (2014). Parasitol Res. https://doi.org/10.1007/s00436-014-4068-5.Google Scholar
- 31.R. Perumal, S. Sowmiya, S. Prasannakumar, P. Deepak Ravikumar, and G. Balasubramani (2018). Natural Product Res. 32, 1316–1319.CrossRefGoogle Scholar
- 32.K. Govindaraju, V. Kiruthiga, V. Ganesh Kumar, and G. Singaravelu (2009). J. Nanosci. Nanotechnol. 9, 5497–5501.CrossRefGoogle Scholar
- 33.S. Rajesh, D. Patric Raja, J. M. Rathi, and K. Sahayaraj (2012). J. Biopest. 5, 119–128.Google Scholar
- 34.K. Murugan, G. Benelli, S. Ayyappan, D. Dinesh, C. Panneerselvam, M. Nicoletti, J. Hwang, P. Mahesh Kumar, J. Subramaniam, and U. Suresh (2015). Parasitol. Res. https://doi.org/10.1007/s00436-015-4417-z.Google Scholar
- 35.D. Dinesh, K. Murugan, P. Madhiyazhagan, C. Panneerselvam, M. Nicoletti, W. Jiang, G. Benelli, B. Chandramohan, and U. Suresh (2015). Parasitol. Res. 114, 1519–1529.CrossRefGoogle Scholar
- 36.U. Suresh, K. Murugan, G. Benelli, M. Nicoletti, D. R. Barnard, C. Panneerselvam, P. Mahesh Kumar, J. Subramaniam, D. Dinesh, and B. Chandramohan (2015). Parasitol. Res. https://doi.org/10.1007/s00436-015-4339-9.Google Scholar
- 37.W. Abbott (1925). J. Econ. Entomol. 18, 265–267.CrossRefGoogle Scholar
- 38.K. Karunamoorthi (2011). Clin. Microbiol. Infect. 17, 1608–1616.CrossRefGoogle Scholar
- 39.J. Santoso, Y. Yumiko, and S. Takeshi (2004). Fish Sci. 70, 183–188.CrossRefGoogle Scholar
- 40.M. Govindarajan, H. F. Khater, C. Panneerselvam, and G. Benelli (2016). Res. Vet. Sci. 107, 95–101.CrossRefGoogle Scholar
- 41.M. Govindarajan, M. Rajeswary, K. Veerakumar, U. Muthukumaran, S. L. Hoti, H. F. Khater, and G. Benelli (2016). J. Photochem. Photobiol. B Biol. 161, 482–489.CrossRefGoogle Scholar
- 42.M. Teimouri, F. K. Nejad, F. Attar, A. A. Saboury, I. Kostova, G. Benelli, and F. Falahati (2018). J. Cleaner Prod. 184, 740–753.CrossRefGoogle Scholar
- 43.G. Rajakumar and A. A. Rahuman (2012). Res. Vet. Sci. 93, 303–309.CrossRefGoogle Scholar
- 44.M. Govindarajan and G. Benelli (2016). RSC Adv. 6, 59021–59029.CrossRefGoogle Scholar
- 45.A. T. Aziz, M. Ali Alshehri, C. Panneerselvam, K. Murugan, S. Trivedi, J. A. Mahyoub, M. M. Hassan, F. Maggi, S. Sut, S. Dall’Acqua, A. Canale, and G. Benelli (2018). J Photochem Photobiol B Biol 180, 225–234.CrossRefGoogle Scholar
- 46.S. A. Alyahya, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, B. Vaseeharan, R. Ishwarya, M. Yazhiniprabha, and G. Benelli (2018). J. Photochem. Photobiol. B Biol. 181, 70–79.CrossRefGoogle Scholar
- 47.P. K. Dhanalakshmi, R. Azeez, R. Rekha, S. Poonkodi, and T. Nallamuthu (2012). Phykos 42, 39–45.Google Scholar
- 48.P. Kumar, S. Senthamil Selvi, A. Lakshmi Prabha, K. Prem Kumar, R. S. Ganeshkumar, and M. Govindaraju (2012). Nano Biomed. Eng. 4, 12–16.Google Scholar
- 49.A. P. de Aragao, T. M. de Oliveira, P. V. Quelemes, M. L. G. Perfeito, M. C. Araujo, J. A. S. Santiago, V. S. Cardoso, P. Quaresma, J. R. S. de Almeida Leite, and D. A. da Silva (2016). Arab J. Chem. https://doi.org/10.1016/j.arabjc.2016.04.014.Google Scholar
- 50.K. Murugan, C. M. Samidoss, C. Panneerselvam, A. Higuchi, M. Roni, U. Suresh, B. Chandramohan, J. Subramaniam, P. Madhiyazhagan, D. Dinesh, R. Rajaganesh, A. A. Alarfaj, M. Nicoletti, S. Kumar, H. Wei, A. Canale, H. Mehlhorn, and G. Benelli (2015). Parasitol. Res. https://doi.org/10.1007/s00436-015-4638-1.Google Scholar
- 51.S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry (2004). J. Colloid Interface Sci. 275, 496–502.CrossRefGoogle Scholar
- 52.G. Singaravelu, J. S. Arockiamary, V. Ganesh Kumar, and K. Govindaraju (2007). Colloids Surf. B Biointerf. 57, 97–101.CrossRefGoogle Scholar
- 53.P. Magudapatty, P. Gangopadhyayrans, B. K. Panigrahi, K. G. M. Nair, and S. Dhara (2001). Physica. B 299, 142–146.CrossRefGoogle Scholar
- 54.J. Kaviya, B. Santhanalakshmi, J. Muthumary Viswanathan, and K. Srinivasan (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 594–598.CrossRefGoogle Scholar
- 55.S. Anil Kumar, M. K. Abyaneh, S. W. Gosavi Sulabha, A. Ahmad, and M. I. Khan (2007). Nitrate reductase mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 29, 439–445.CrossRefGoogle Scholar
- 56.J. Suriya, S. Bharathi Raja, V. Sekar, and R. Rajasekaran (2012). Afr. J. Biotechnol. 11, 12192–12198.CrossRefGoogle Scholar
- 57.P. M. G. Nair and J. Choi (2011). Aquat. Toxicol. 101, 550–560.CrossRefGoogle Scholar
- 58.R. Foldbjerg, X. Jiang, T. Miclăus, C. Chunying, H. Autrup, and C. Beer (2015). Toxicol. Res. 4, 563–575.CrossRefGoogle Scholar
- 59.B. H. Mao, Z. Y. Chen, Y. J. Wang, and S. J. Yan (2018). Sci. Rep. 8, 2445.CrossRefGoogle Scholar
- 60.M. Rai, K. Kon, A. Ingle, N. Duran, S. Galdiero, and M. Galdiero (2014). Appl. Microb. Biotechnol. 98, 1951–1961.CrossRefGoogle Scholar
- 61.X. Jiang, T. Miclăuş, L. Wang, R. Foldbjerg, D. S. Sutherland, H. Autrup, C. Chen, and C. Beer (2015). Nanotoxicol. 9, 181–189.CrossRefGoogle Scholar
- 62.J. Subramaniam, K. Kovendan, P. Mahesh Kumar, K. Murugan, and W. Walton (2012). Saudi J. Biol. Sci. 19, 503–509.CrossRefGoogle Scholar
- 63.C. D. Patil, H. P. Borase, S. V. Patil, R. B. Salunkhe, and B. K. Salunke (2012). Parasitol. Res. 111, 555–562.CrossRefGoogle Scholar
- 64.C. D. Patil, S. V. Patil, H. P. Borase, B. K. Salunke, and R. B. Salunkhe (2012). Parasitol. Res. 110, 1815–1822.CrossRefGoogle Scholar