Advertisement

Synthesis of Plant Latex Based Hybrid Nanocarriers Using Surfactants for Curcumin Delivery

  • Antony V. SamrotEmail author
  • K. Sahiti
  • Karanam Sai Bhavya
  • B. Suvedhaa
Original Paper
  • 30 Downloads

Abstract

Plants exude polymer particles through a white sap known as the latex. These latexes are complex mixtures that consist of polar and non-polar components. Extracting these components using different polarity solvents and re-mixing with surfactants results in the formation of nanoparticles. In this study, latex from Euphorbia antiquorum and Calotropis gigantea was collected. Polar and non-polar components were extracted using water and benzene respectively and characterized by UV–Vis spectrometry, FTIR and GC–MS. Both the polar and non polar extracts together were subjected for nanocarrier synthesis using surfactants (Triton X, SDS, CTAB, TWEEN 20 and SPAN 20) by sample emulsion solvent evaporation technique. The obtained nanocarrier was characterized using different analytical techniques like UV Vis, FTIR, SEM, AFM. The nanocarriers were also loaded with curcumin and subjected for drug delivery studies invitro. Using the latex of C. gigantea and E. antiquorum, curcumin loaded nanoparticles of size 300 nm was produced. Triton X was producing smaller nanoparticles and all the nanoparticles were releasing the loaded curcumin in acidic environment only.

Keywords

Euphorbia antiquorum Calotropis gigantea Latex Hybrid nanocarriers Drug delivery 

Notes

Compliance with Ethical Standards

Conflict of interest

All the authors of this paper have no conflict of interest.

References

  1. 1.
    H. Martin, W. R. James, F. R. James, and T. Karen (2008). Ecotoxicology 17, 344.  https://doi.org/10.1007/s10646-008-0225-x.CrossRefGoogle Scholar
  2. 2.
    F. Rancan, U. Blume-Peytavi, and A. Vogt (2014). Clin. Cosmet. Investig. Dermatol. 106, 153.  https://doi.org/10.2147/ccid.s39559.CrossRefGoogle Scholar
  3. 3.
    A. V. Samrot, A. Reddy, S. Sukeetha, and P. Senthilkumar (2011). Appl. Biochem. Biotechnol. 163, 195.CrossRefPubMedGoogle Scholar
  4. 4.
    L. Lei, J. Guohua, Y. Weijiang, L. Depeng, C. Hua, L. Yongkun, T. Zaizai, K. Xiang dong, and Y. Juming (2017). Mater. Sci. Eng. 70, 278.  https://doi.org/10.1016/j.msec.2016.08.083.CrossRefGoogle Scholar
  5. 5.
    J. Sivakumar, C. Premkumar, P. Santhanam, and N. Saraswathi (2011). Afr. J. Basic Appl. Sci. 39, 265.Google Scholar
  6. 6.
    D. Pratik, P. Rohan, D. Kailas, H. Anup, and D. Pushpa (2015). Int. J. Sci. Res. (IJSR) 4, 340.Google Scholar
  7. 7.
  8. 8.
    P. K. Sake, Rajeswari, V. Reddy, A. G. Damu, and S. V. P. S. Khan (2013). Indian J. Adv. Chem. Sci. 1, 117.Google Scholar
  9. 9.
    M. V. Ramos, G. D. P. Bandeira, C. D. T. D. Freitas, N. A. P. Nogueira, N. M. N. Alencar, P. A. S. D. Sousa, and A. F. U. Carvalho (2006). Memórias do Instituto Oswaldo Cruz. 101, 503.  https://doi.org/10.1590/s0074-02762006000500004.CrossRefPubMedGoogle Scholar
  10. 10.
    M. L. Mesquita, J. Desrivot, C. Bories, A. Fournet, J. E. Paula, and P. Grellier (2005). Mem Inst Oswaldo Cruz. 100, 783.  https://doi.org/10.1590/s0074-02762005000700019.CrossRefPubMedGoogle Scholar
  11. 11.
    M. N. Salim, D. Masyitha, A. Harris, U. Balqis, C. D. Iskandar, M. Hambal, and Darmawi Vet (2018). World 11, 99.  https://doi.org/10.14202/vetworld.2018.99-103.CrossRefGoogle Scholar
  12. 12.
    V. N. Verma (2013). Int. Lett. Chem. Phys. Astron. 20, 74.CrossRefGoogle Scholar
  13. 13.
    L. E. C. Luz, K. S. Paludo, V. L. P. Santos, C. R. C. Franco, T. Klein, R. Z. Silva, F. L. Beltrame, and J. M. Bude (2015). Revista Brasileira de Farmacognosia 25, 344.  https://doi.org/10.1016/j.bjp.2015.07.005.CrossRefGoogle Scholar
  14. 14.
    I. A. L. Nogueira, A. B. B. Leão, M. S. Vieira, P. L. Benfica, L. C. Cunha, and M. C. Valadares (2008). J. Ethnopharmacol 120, 474.  https://doi.org/10.1016/j.jep.2008.08.026.CrossRefPubMedGoogle Scholar
  15. 15.
    M. F. Mota, P. L. Benfica, A. C. Batista, F. S. Martins, J. R. De Paula, and M. C. Valadares (2012). J. Ethnopharmacol. 139, 319.  https://doi.org/10.1016/j.jep.2011.04.055.CrossRefPubMedGoogle Scholar
  16. 16.
    F. C. Suk, A. Aressa, and C. P. Suh (2014). J. Nanomater. 763, 1.  https://doi.org/10.1155/2014/763736.CrossRefGoogle Scholar
  17. 17.
    P. Pradeepkumar, M. GovindarajaJeyaraj, A. M. Munusamy, and M. Rajan (2017). Biomed. Pharmacother. 87, 461.  https://doi.org/10.1016/j.biopha.2016.12.133.CrossRefPubMedGoogle Scholar
  18. 18.
    S. Delia, P. Francesca, M. Claudia, A. S. Mariano, C. Mariano, F. Giovanni, and M. Rosaria (2004). Biopolymers 97, 589.  https://doi.org/10.1002/bip.22044.CrossRefGoogle Scholar
  19. 19.
    M. J. Nirmala and R. Nagarajan (2017). J. Nanomed. Nanotechnol. 8, 434.  https://doi.org/10.4172/2157-7439.1000434.CrossRefGoogle Scholar
  20. 20.
    A. V. Samrot, Akanksha, T. Jahnavi, S. Padmanaban, S. A. Philip, U. Burman, and A. M. Rabel (2016). Appl. Nanosci. 6, (8), 1219.  https://doi.org/10.1007/s13204-016-0536-9.CrossRefGoogle Scholar
  21. 21.
    D. Spano, F. Pintus, C. Mascia, M. A. Scorciapino, M. Casu, G. Floris, and R. Medda (2012). Biopolymers 97, 589.  https://doi.org/10.1002/bip.22044.CrossRefPubMedGoogle Scholar
  22. 22.
    R. P. Pawar (2017). World J. Pharmaceut. Life Sci. 2, 590.Google Scholar
  23. 23.
    A. Khusro, C. Aarti, J. P. Preetamraj, and S. G. Panicker (2014). Int. J. Pharm. Pharmaceut. Sci. 6.Google Scholar
  24. 24.
    A. Ranade, R. Acharya, V. Shukla, S. Roy, and J. Maji (2017). J. Res. Educ. Indian Med. 23, 59.CrossRefGoogle Scholar
  25. 25.
    N. Ramamurthy and S. Kannan (2007). Rom. J. Biophys. 17, 269.Google Scholar
  26. 26.
    M. K. K. Ahmed, A. C. Rana, and V. K. Dixit (2005). Pharmacogn. Mag. 1, 48.Google Scholar
  27. 27.
    S. Awale, Y. Tezuka, S. Shimoji, K. Taira, and S. Kadota (2002). Tetrahedron Lett. 43, 1473.  https://doi.org/10.1016/s0040-4039(02)00037-0.CrossRefGoogle Scholar
  28. 28.
    R. Chandrasekaran, S. Gnanasekar, P. Seetharaman, M. Krishnan, and S. Sivaperumal (2017). Biocatal. Agric. Biotechnol. 10, 75.  https://doi.org/10.1016/j.bcab.2017.02.008.CrossRefGoogle Scholar
  29. 29.
    S. Sharma, A. Kumari, and M. Sharma (2016). Int. J. Pharmacogn. Phytochem. Res. 8, 1823.Google Scholar
  30. 30.
    A. V. Samrot, U. Burman, S. A. Philip, N. Shobana, and K. Chandrasekaran (2018). Inform. Med. Unlocked. 10, 159.  https://doi.org/10.1016/j.imu.2017.12.010.CrossRefGoogle Scholar
  31. 31.
    A. V. Samrot, B. Suvedhaa, C. S. Sahithya, and A. M. Kumar (2018). J. Cluster Sci. 1.  https://doi.org/10.1007/s10876-018-1412-4.
  32. 32.
    M. Madhavi, K. Madhavi, and A. V. Jithan (2012). J. Pharm. Bioallied Sci. 4, 164.  https://doi.org/10.4103/0975-7406.94825.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    P. Senthilkumar, S. S. Dawn, K. S. Samanvitha, S. S. Kumar, G. N. Kumar, and A. V. Samrot (2017). Biocatal. Agric. Biotechnol. 12, 292.  https://doi.org/10.1016/j.bcab.2017.10.019.CrossRefGoogle Scholar
  34. 34.
    A. V. Samrot, B. Suvedhaa, C. S. Sahithya, and A. M. Kumar (2018). J. Cluster Sci. 29, 989.  https://doi.org/10.1007/s10876-018-1412-4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Antony V. Samrot
    • 1
    Email author
  • K. Sahiti
    • 1
  • Karanam Sai Bhavya
    • 1
  • B. Suvedhaa
    • 1
  1. 1.Department of BiotechnologySathyabama Institute of Science and TechnologyChennaiIndia

Personalised recommendations